
Visual Servoing for Reaching and
Grasping Behaviors

Master Thesis

By

PAOLA A. ARDÓN RAMÍREZ

HERIOT-WATT UNIVERSITY

A dissertation submitted to ViBot program in accordance
with the regulations of Erasmus Mundus Master in Vi-
sion and Robotics.

JUNE 2017

Master Thesis Supervisors: Dr. Mauro Dragone and Dr. Mustafa Suphi Erden

ABSTRACT

Humanoid robots are playing increasingly important roles in real life tasks, espe-
cially when it comes to indoor applications. Applications such as grasping simple
objects show to be of great interest in the field.

The well-known Aldebaran service robot Pepper shows to be useful for the task. To
the date, there is not public application that allows Pepper to grasp objects. Thus, this
work rather than presenting new methodologies it implements a combination of existing
algorithms to create a new application for Pepper for reaching and grasping behaviors
using visual servoing control techniques.

Given the robot’s kinematics and dynamic control schemes, a pose based visual
servoing (PBVS) is used for reaching and grasping manipulating the robot’s right hand
as end-effector.

For the implementation, we use a markerless model-based tracker method for de-
tecting the object, and a pattern detection algorithm to add precision to the tracking
of Pepper’s hand. These two methods combined with an adaptive gain for the control
scheme create a robust robotic’s PBVS application. The system is implemented using
ROS as the main platform along with Aldebaran NaoqiSDK, ViSP and WhyCon libraries.
For this robotic system, the method shows better results for grasping than using the
conventional motion planing techniques; showing a 48.8% of increment in the grasping
success rate.

Due to the modular implementation of the system, it can easily be improved and
extended to other humanoid robots by trying different detection/tracking methods, ma-
nipulating both end-effectors among others.

Index: Robotics, visual servoing, pose based visual servoing, model-based tracking,
Pepper robot,ROS

i

DEDICATION AND ACKNOWLEDGEMENTS

I would like to thank my project supervisors Dr. Mauro Dragone and Dr. Mustafa
Suphi Erden for their helpful guidance and support in the process. As well as Dr.
Yvan Petillot for his comments and advice on the implemented system. Especial

thanks to Giovanni Claudio for his support on the use of ViSP packages and extra
guidance on visual servoing techniques. Additionally, thanks to Bence Magyar and
Christian Dondrup for their advice on ROS-Aldebaran node design and framework.

ii

TABLE OF CONTENTS

Page

List of Tables v

List of Figures vi

1 Introduction 1
1.1 Problem Statement and Solution . 1

1.2 Project Management . 3

1.3 Contributions and Outline . 5

2 State of the Art 6
2.1 Control Techniques . 7

2.1.1 Image Based Visual Servoing – IBVS 7

2.1.2 Pose Based Visual Servoing – PBVS 8

2.1.3 Hybrid Visual Servoing – HVS . 9

2.2 Configurations for Robot End Effector . 10

2.3 Related Work . 12

3 System Architecture 14
3.1 PBVS for Pepper . 15

3.2 Software . 18

4 Tracking the Robot’s Manipulator 22
4.1 Pose Estimation using WhyCon Libraries . 23

4.2 Comparison of Methods . 27

5 Tracking the Object to Grasp 28
5.1 Extract the Features of the Object . 30

5.1.1 Kanade-Lucas-Tomasi (KLT) Feature Extraction 30

iii

TABLE OF CONTENTS

5.1.2 Edge Tracker . 32

5.2 Getting the Pose with Respect to the Camera 34

5.3 Testing the Method . 34

6 Controlling the Joints in Velocity 37
6.1 Pepper Velocity Control . 37

7 Results for PBVS on Pepper 40
7.1 PBVS with 5-DOF . 42

7.2 PBVS with 6-DOF . 47

8 Conclusions 53
8.1 Discussion . 53

8.1.1 Disadvantages of the Implemented Method 55

8.1.2 Comparison with Other Approaches 56

8.2 Future Work . 57

A Appendix A - Parameters Details 58
A.1 Camera Calibration Parameters . 58

A.2 Matrices Details . 58

A.2.1 Homogeneous matrix eMh . 58

A.2.2 Homogeneous matrix dhMof f set . 59

A.2.3 Homogeneous matrix cMdbox . 59

A.3 Pseudo Algorithms . 60

A.3.1 Fast Flood-Fill Algorithm . 60

A.4 KLT and Edge Tracker Parameters . 61

A.5 Pepper Follow People . 61

A.5.1 ALMovementDetection . 62

A.5.2 ALPeoplePerception . 62

A.5.3 ALEngagementZones . 62

Bibliography 63

iv

LIST OF TABLES

TABLE Page

1.1 Project Management . 4

5.1 Accuracy of the Tracker in Comparison with Whycon 36

7.1 Summary for Tunning Parameters . 52

8.1 Comparing MoveIt!, 5-DOF PBVS and 6-DOF PBVS 55

A.1 KLT Settings . 61

A.2 Edge Tracker Settings . 61

v

LIST OF FIGURES

FIGURE Page

1.1 Pepper robot . 2

1.2 Project Management for PBVS on Pepper . 3

2.1 System Behavior Using PBVS s = (c∗tc,θu) . 9

2.2 Eye-Hand Configurations for Grasping . 11

3.1 Frames Definition for Grasping an Object . 16

3.2 Closed Loop – PBVS Control Scheme for Pepper 17

3.3 First Proposed Solution for the System . 19

3.4 Functional Design for Grasping Application . 20

3.5 RQT Map for the Final Implemented System . 21

4.1 QRCode Detection for Pepper . 22

4.2 Simplified Map for the Implementation of the Hand Tracker Node in ROS . . 23

4.3 WhyCon Roundels . 24

4.4 WhyCon Roundels Placed on Pepper . 24

4.5 WhyCon Roundels Placed on Pepper Following Hand’s Trajectory 26

4.6 Comparison recognition Performance, Accuracy Rate for Both Methods. . . . 27

4.7 Comparison recognition Performance, Runtime Detection for Both Methods. 27

5.1 Simplified MBT Implementation in ROS . 29

5.2 Model Base Tracker KLT + Edge Detection . 30

5.3 KLT Affine Map . 31

5.4 KLT Process Summary . 32

5.5 Edge Detection Method . 33

5.6 Comparison on the Tracking- Translation Vectors 35

5.7 Comparison on the Tracking- Rotation Vectors 35

5.8 Final result for the Box Tracking . 36

vi

LIST OF FIGURES

6.1 Pepper Velocity Control for Left and Right Elbow 39

6.2 Pepper Velocity Control Error Measurement . 39

6.3 Pepper’s Right Arm Joints . 39

7.1 Pepper 2D Cameras Specifications . 41

7.2 Process to Run PBVS application on Pepper . 42

7.3 Real robot and MoveIt! Simulator to calculate Affordable Positions for the Box

to be Grasped . 43

7.4 Graphical Representation of Success vs Failed Attempts for Grasping with

Motion Planning . 44

7.5 Time Taken to Succeed or Fail for Grasping . 44

7.6 Results of Grasping Attempts with Pepper – 5-DOF 45

7.7 Successful Grasp with 5-DOF. 46

7.8 Mean Square Error for 5-DOF . 46

7.9 Right Arm Joints Velocities . 47

7.10 Velocities for Pepper’s Base . 48

7.11 Results of Grasping Attempts with Pepper – 6-DOF 48

7.12 Mean Square Error with 6-DOF . 49

7.13 Task Error for the PBVS on Pepper . 50

7.14 Joints Velocities for λ∞ = 0.07 . 50

7.15 Joints Velocities for λ∞ = 0.1 . 51

7.16 Joints Velocities for λ∞ = 0.02 . 51

7.17 System Behavior for PBVS . Goal position: x = 0.104; y= 0.340; z = 0.0670 . . 52

vii

C
H

A
P

T
E

R

1
INTRODUCTION

The technological advancements in the last decade have significantly improved

the quality of people’s life. In an attempt to make life easier a big step has been

taken in the field of robotics – the development of humanoid robots.

Humanoid robots are designed to emulate aspects of human behavior in order to

accomplish some tasks. Being grasping objects one of them. Grasping is considered to

be simple for humans, yet it is not so simple for a robot. It requires many skills. On one

hand, a planning and reaching approach. On the other, the target’s perception and model

reconstruction. Studies demonstrate that for humans most of this information is obtained

by vision [27]. Hence, the importance of visual control techniques in robotics. These are

techniques that allow to control the motion of a robotic system with the information

extracted from vision sensors [20].

1.1 Problem Statement and Solution

Because of the many robotics applications in the household, there is a growing interest of

implementing visual control techniques that allow a humanoid robot to reach and grasp

objects.

The path planning techniques used in industry with the purpose of grasping are

not suitable for humanoid robots. These techniques cannot react quickly to changes in

everyday environment and do not adapt to the low repeatability and imprecise kinematics

of service robots.On the other hand, visual servoing control schemes offer the flexibility to

1

CHAPTER 1. INTRODUCTION

build the system in a way that fits the robot’s morphology and environmental conditions.

For the purposes of this project we focus the implementation of our visual control scheme

on Pepper robot, shown in fig.1.1.

FIGURE 1.1. Pepper – humanoid robot created by Aldebaran-Softbank with the
purpose of being a human companion. Image courtesy of [1]

1.1.0.1 Project Objectives

The project’s aim is to investigate existing methods to build a visual servoing technique

robust enough to be applied on a new robotic platform which end-effectors have less than

6-DOF (degrees of freedom) with the final purpose of grasping an object.Specifically, in

this project the following is to be accomplished:

• Study visual servoing approaches and control strategies developed over the last

years.

• Design a visual servoing controller and a reaching and grasping strategy for the

humanoid robot Pepper (building on existing control libraries).

• Implement a system demonstration on the real robot.

2

CHAPTER 1. INTRODUCTION

1.2 Project Management

In order to accomplish the objectives of the project the schedule detailed in fig.1.2 and

table 1.1 was closely followed.

Figure 1.2: Project Management for PBVS on Pepper

We were given a total of 21 weeks to finish the project. As seen in table 1.1 the schedule

had a couple of setbacks. Working with hardware can bring some extra difficulties that

included the handling of the robot’s morphology, unplanned software update of the robot’s

image system, among others. All together brought a delay on the dates marked in red on

the schedule.

Despite the many delays, the system integration was successful.

3

CHAPTER 1. INTRODUCTION

Table 1.1: Project Management

Task Name Start End Duration

Reading Scope Jan 01 Jan 08 8 days

1st Literature Review Jan 08 Jan 08 1 day

Define Scope of Review Jan 08 Jan 12 4 days

Define Approach Jan 12 Jan 14 2 days

Classify Documentation Jan 14 Jan 15 1 day

Software Structure Jan 15 Jan 30 15 days

Coding Feb 01 March 31 59 days

Design Experiments April 01 April 03 3 days

Run Experiments April 04 May 01 27 days

Analysis on Experiments May 02 May 08 6 days

Solving/Conclusion May 08 May 12 6 days

Documentation May 12 May 30 17 days

4

CHAPTER 1. INTRODUCTION

1.3 Contributions and Outline

This work does not present new methodologies but rather an implementation with al-

ready existing algorithms that together build a new and robust application for grasping

an object using Pepper robot. Showing a success rate of over 70% for grasping, outper-

forming by 48.8% the performance of motion planning techniques for this robotic plaform.

To the knowledge of the author, there are not reported results of using visual servoing

techniques with the purpose of grasping on Pepper. Thus, we present a robust pose based

visual servoing (PBVS) technique that demonstrates to be reliable and suitable for real

time applications.

The code of the implemented method is available to download in an open repository

in bitbucket, along with the guidelines for the installation of the needed modules. Addi-

tionally, given the structure of the implementation, it can easily be extended to different

objects and other humanoid robots.

This paper is organized as follows: chapter 2 explains the state-of-the-art methods

for visual servoing, chapter 3 shows the implemented control technique and the software

used for the implementation, chapter 4 shows the pattern tracking algorithm to obtain

the position of the robot’s end-effector, chapter 5 explains a maskerless model base

tracker algorithm that gives the object’s position, chapter 6 expands on how to control

Pepper joints in velocity and chapter 7 shows the final results of the implementation.

5

C
H

A
P

T
E

R

2
STATE OF THE ART

This chapter aims to introduce the general concepts of the most common control

techniques and their requirements to achieve a successful visual servo system.

Regardless of the control scheme we look to reduce the error e(t) [20], defined as:

(2.1) e(t)= s(m(t),a)− s∗

where:

• m(t) is the vector representing the set of image measurements. These are the

coordinates of the interest points [20]. Once these measurements are obtained,

they are used to compute a vector of k visual features s(m(t),a).

• a is the set of parameters that represent any potential additional data. This can

be the camera intrinsic parameters or the 3D model of the object to track [26].

• s∗ is the vector that stores the desired values of the features or desired final

position. The setup of s∗ is what defines the servoing scheme and we will see it in

detail in section 2.2.

Once s∗ is chosen the control scheme is simplified [22], and all we need to do is to

apply a velocity controller vc. Now, we relate ṡ and vc as:

(2.2) ṡ= Lsvc

6

CHAPTER 2. STATE OF THE ART

with Ls being a k×6 interaction matrix [27]. We obtain the time variation by defining:

(2.3) ė = Levc

where Le = Ls [20]. Now, we need to input vc to the robot’s controller to ensure the

exponential decrease of the error. Therefore vc is defined as:

(2.4) vc =−λL̂+
e e

where L̂+
e is the approximation of the pseudo- inverse of the interaction matrix Le,

assuming Le is full rank [20]. And λ is the proportional gain [27] or a complex function

to regulate s to s∗. Thus, the real behavior of the closed loop system error is calculated

by:

(2.5) ė =−λLeL̂+
e e

The following sections will go into how to build the interaction matrices depending

on the control techniques and how to build s∗ depending on the robot configuration.

2.1 Control Techniques

There are mainly three types of control techniques:

2.1.1 Image Based Visual Servoing – IBVS

Image based visual servoing is built upon the selection of a visual feature set s in the

image that need to reach the desired s∗ value [23]. Where, s is usually composed of

the image coordinates of different points belonging to the target.And the desired set of

features can be obtained by computing the projection in the image of the target’s 3D

model for the desired camera pose. Therefore for this approach the camera calibration

plays a key role [23].

A 3D point projected in the camera frame as a 2D point, x = (x, y), is defined as [20]:

(2.6)
{

x = X /Z = (u− cu)/ fα
y=Y /Z = (v− cv)/ f

where m = (u,v) gives the coordinates of the image point expressed in pixel units,

and a = (cu, cv, f ,α) represent the intrinsic camera parameters [20]. Being cu and cv

the coordinates of the principal point, f the focal length and α the ration of the pixel

dimension.

7

CHAPTER 2. STATE OF THE ART

For this scheme the interaction matrix is represented as:

(2.7) Lx =
[
−1/Z 0 x/Z xy −(1+ x2) y

0 −1/Z y/Z 1+ y2 −xy −x

]

Where Z represents the depth of the corresponding point in camera frame. Therefore

Z must be estimated before hand. It is a good practice to use an approximation L̂+
x , given

the involvement of the camera parameters.

As a summary, for IBVS is important to face camera calibration errors, noisy mea-

surements of the image and the unknown value of Z. It is also essential to ensure the

asymptotic stability and convergence of the system [22].

2.1.2 Pose Based Visual Servoing – PBVS

Position based visual servoing extracts the position from the 3D model of the object

which directly depends on the camera intrinsic parameters [20]. For this approach is

common to define s in terms of the parameters that represent the camera pose. Therefore

it is safe to consider three camera frames [20]:

• The current camera frame, which is denoted as Fc,

• The desired camera frame, Fc∗, and

• The reference frame, Fo, which is attached to the object.

Usually, the PBVS is designed by using s= (c∗tc,θu) in which case s∗ = 0, e = s and the

interaction matrix is:

(2.8) Le =
[

R 0

0 Lθu

]

where: t represents the translation vector and θu gives the angle/axis for the rotation

[20].cto represents the coordinates of the origin of the object frame expressed relative to

the current frame and c∗tc represents the coordinates of the current frame expressed

relative to the desired frame [20]. Additionally, let R =c∗ Rc represent the rotation

matrix that determines the orientation of the current camera frame with respect to the

desired frame [23].

If the pose parameters are perfectly estimated, the camera trajectory is a straight

line as seen in fig.2.1 [23].

8

CHAPTER 2. STATE OF THE ART

Figure 2.1: System behavior using PBVS when s = (c∗tc,θu) approach. Image Courtesy of
[20].

The greatest advantage of PBVS above IBVS is the stability of the system. This

means it has better response to large transnational and rotational camera motions On

the other hand, there are some disadvantages that need to be considered:

• As most of the inverse problems, it can result in an ill-posed problem sensitive to

perturbations [22].

• Small errors in the image measurements may lead to very different results, espe-

cially in the case of planar targets. In these cases, the control law can be completely

unstable.

• It can be computational expensive and non-linear depending on the choice of s [22].

As a general picture, most of the problems in this control scheme result from the

target’s pose estimation algorithm. Certainly, small errors in getting the points position

in the image can significantly affect the accuracy and stability of the system.

2.1.3 Hybrid Visual Servoing – HVS

For the third controlling scheme the purpose is to put together the advantages of both

image based and pose based visual servoing approaches. Considering a feature vector st

and an error e t devoted to control the translational degrees of freedom [20], we can split

the interaction matrix as:

(2.9)

ṡ = Lst vc

=
[
Lυ Lω

][
υc

ωc

]
= Lυυc +Lωωc

9

CHAPTER 2. STATE OF THE ART

where vc and ωc represent the linear and angular camera velocities. The most common

method for the hybrid approach is the 2−1/2D Visual servoing explained in [34]. Where

st is selected as the coordinates of an image point

This approach offers more advantages such as [20]:

• In terms of stability, it is also clear that this scheme is asymptotically stable in

perfect conditions.

• The only unknown parameter involved in this scheme is Z∗ which can be calculated

online using adaptive techniques.

• It does not required full pose estimation

• The Cartesian camera motion and image plane trajectory can be controlled simul-

taneously.

• It can accommodate large translational and rotational camera motions.

On the downside, it also has some disadvantages [22]:

• There is always the possibility of the features leaving the camera frame.

• It is noise sensible and affected by the reference point. Therefore, it can also be

computational expensive.

2.2 Configurations for Robot End Effector

There are two main configurations for the robot end effector: Eyen-in-hand, which is

when the camera is attached to the moving hand, thus moves with the end-effector. This

configuration offers higher precision since the camera is closer to the moving manipulator

[17]. Eye-to-hand is when the camera observes the target and the moving hand from a

fixed position. This lowers the precision due to the farther positioning of the camera from

the workspace. Figure 2.2 shows both configurations, the first one being eye-to hand and

the second one representing eye-in-hand.

These configurations are particularly useful when the robot has less degrees of

freedom and therefore the control scheme needs to be expressed in joint space [20]. In

the joint space, for both configurations, the system equation is as follows:

(2.10) ṡ= Js q̇+ δs

δt

10

CHAPTER 2. STATE OF THE ART

Figure 2.2: Eye-Hand Configurations for Grasping. Image Courtesy of [17].

Where, Js ∈ Rk×n represents the feature Jacobian matrix which is usually linked to the

interaction matrix, and n represents the number of robot joints [20]. Now:

• For an eye-in-hand δs
δt

represents the time variation of s due to the object’s motion

[20], and Js is given by:

(2.11) Js = Ls
cXN J(q)

where, cXN represents the spatial motion transformation matrix from the camera

frame to the end effector frame. And, J(q) is the robot Jacobian expressed in the

end effector frame.

• For an eye-to-hand δs
δt

is the time variation of s due the camera motion [20], and

Js is:

(2.12) Js =−Ls
cXo

oJq

where, oJq is the robot Jacobian expressed in the robot reference frame. And cXo

is the spatial motion transformation matrix from the camera frame to the reference

frame [20].

Once the modeling is done we need to design a control scheme expressed in the joint

space. To ensure the stability of this control scheme it is necessary to consider again

e = s− s∗ and the exponential decoupled decrease of e [20], therefore now the control

11

CHAPTER 2. STATE OF THE ART

scheme is represented as:

(2.13) q̇ =−λĴ+
e e− Ĵ+

e
δ̂s

δt
+Pλg

Where:

• Ĵ+
e is an estimation of the Moore-Penrose pseudo-inverse of the task Jacobian.

Which is a combination of the interaction matrix and the articular Jacobian of the

robot [35]. Where J e depends on the chosen visual servoing task.

• Pλ is the large projection operator that allows the system to perform a sec-

ondary task despite if the main task is full rank [35]. It is defined in [20] as:

Pλ =λ(||e||)P||e||+ (2−λ(||e||))Pe. Being Pe = (In − J+
e Je) the classical projector and

P||e|| the new projection operator that imposes the exponential decrease of the

norm of the error instead of each term of the error vector. Therefore, the use of the

sigmoid function λ(||e||) to switch from P||e|| to Pe [35].

• g is a vector that defines the secondary task. It can be designed to avoid joint

limits, obstacles or singularities. In our case we will use it to avoid the joint limits

so that the velocity controller is more reliable.

To ensure the global asymptotic stability of the system we consider the following [20]:

• If k = n then the condition is given by:

(2.14) Je Ĵ+
e > 0

• If k > n then:

(2.15) Ĵ+
e Je > 0

In both cases the extrinsic camera parameters reside in Je and the estimated ones in Ĵ+
e

2.3 Related Work

Many approaches have been directed towards the integration and implementation of

robust visual servoing techniques for reaching and grasping behaviors. However, re-

cent studies lean towards more daring techniques involving sophisticated 3D model

reconstruction and machine learning algorithms such as the ones presented in [38], [33]

12

CHAPTER 2. STATE OF THE ART

and [30]. For the purposes of this paper, the related work is limited to conventional

techniques using visual servoing and object tracking models.

One of the first and most significant works in the area is the one presented in [19].

They achieved real time interaction with vision and their system is capable of tracking

moving objects [19]. Their focus was to implement the hand-eye configuration for dynamic

grasping task on a moving conveyor system. Another work is [18]. It shows good results

and overcomes three problems for grasping behaviors: computational time for 3D motion

parameters, predictive control of the robotic arm and grasp planning.

In [29] besides achieving the grasping task, they solve the problem of aligning the end

effector of the robot with the object to grasp. By emphasizing the importance of the online

image Jacobian they show how to plan the grasping between two solids in 3D projective

space using uncalibrated stereo vision [29].On the downside of this approach, the process

requires various visual processes such as object recognition and stereo matching which

results in a quite computational expensive algorithm.

Closer to humanoid robots in [43] and [24] they present a hybrid visual servoing

control scheme for grasping that proves to be robust for real-time applications. [43] shows

the robustness of the system with ARMAR III arm robot. Where their control scheme

robustness lies on estimating the hand position in case of failed visual hand tracking

with the combination of visual, force and motor encoder data sensors.

On the other hand [24] shows a similar work, however it does not rely on force sensors

for the reaching and grasping task but only on visual data. In [39] they use the same

strategy but this time their purpose is to measure task error convergence time with Nao

robot.

Contrary to [24], [41] shows a combination of pose based visual servoing with a robust

laser scanner that grabs objects features such as color in an indoor environment. This is

combined with stereo measurements which ensures the efficiency of the grasping action

even if the object is unknown. A more sophisticated technique used for PBVS without the

aid of extra sensory data is defined in [37]. They locate the right position for the object to

be grasped with local visual descriptors. In a later stage, they learn the good grasping

points and generalize this acknowledge to new objects based on experience.

In the following sections we will see how this work combines object recognition and

tracking techniques with pose based visual servoing on Pepper.

13

C
H

A
P

T
E

R

3
SYSTEM ARCHITECTURE

V isual Servoing techniques offer a way to control the robot’s motion depending on

the received feedback from the environment. As we saw in chapter 2 there are

three main choices to make when designing a visual servoing application: The

control technique, the configuration of our end-effector and how we want to describe the

object that we want to manipulate. In this chapter we focus our attention on the first two:

how we combine the visual servoing control scheme with the end-effector configuration

for Pepper robot.

As for any design, we need to evaluate our system disadvantages before jumping into

the implementation. In terms of hardware, the grasping task with Pepper robot has the

following constraints:

• Pepper’s 2D cameras are very limited. They have 5fps (frames-per-second) oper-

ating at 10Hz. This can affect the object recognition and tracking tasks of the

implementation.

• Pepper can only lift 300 grams, therefore the choice of the object to grasp should be

as light as possible and it should fit in Pepper’s hands.

• The arms have 5-DOF. There are some positions and orientations that the robot

cannot reach, thus the grasping task is compromised unless an extra DOF is added

to the servo.

14

CHAPTER 3. SYSTEM ARCHITECTURE

• There is no control over each of the joints of the hand nor tactile/force/pressure

sensors that would give any feedback about grasping. The hand only has the ability

to open and close.

• Unlike Romeo and NAO, robots of the same company, Pepper does not have the

needed modules to control the joints in velocity (methods of ALMotionProxy), which

is a key task for servo techniques.

Given these limitations we implement a combination of PBVS and eye-hand configu-

ration that even though it is proven to be computational expensive, it is also shown to

be more stable and to find a more accurate solution. In our case, the expected risk of

choosing precision above computational efficiency is worth to be taken.

For this chapter we divide the information in the following manner: Section 3.1 shows

the details of our design for the control technique implementation and section 3.2 shows

the software options that we considered for the application .

3.1 PBVS for Pepper

It is time to focus on visual servoing for humanoid robots, especially for Pepper. In this

part of the document we will see the mathematical basis for the design of the control

scheme. In our implementation, we use the bottom 2D camera for the image extraction

which is located in the mouth, and the robot’s right hand is the chosen manipulator.

During the control task the position of the hand and the object are obtained at

every iteration using the techniques explained in chapters 4 and 5 respectively. Figure

3.1 shows the frame references for the implementation. The frame {o} is attached to

the object; {h} to the hand marker and {h∗} to the desired pose . The transformation

matrix oM∗
h is constant. And, at the end of the PBVS the frames {h} and {h∗} should be

congruent.

15

CHAPTER 3. SYSTEM ARCHITECTURE

Figure 3.1: Frames Definition for Grasping an Object

Let’s start with the goal frame, cMh∗. This frame is equal to the position of the

object multiplied by a constant transformation oMh∗ [24]. This constant transformation

is learned either by placing the hand at the desired position or by saving the desired

object’s offset with respect to the camera, as illustrated on the left side of fig.3.1. The

definition of this transformation is in the following form:

(3.1) cMh∗ =
(h∗

M c
cMo

)−1

Now that we have the goal position we need to reduce the error eh. In order to do so,

we define the pose between h and h∗ in the following way:

(3.2) h∗Mh =o M−1
h∗

cM−1
o

cMh

From this matrix the error tasks can be extracted by taking the translation and orienta-

tion vectors that represent the axis. Leaving the error representation as:

(3.3) eh =
(h∗

th,h∗θuh

)
The interaction matrix used in our approach is the one defined in [20]:

(3.4)
L=

[
h∗Rh 03

03 Lθu

]

Lθu = I3 − θ

2
[u]×+

(
1− sincθ

sinc2 θ
2

)
[u]2

×

And, we use the joint velocity vector q̇h with δ̂s
δt = 0 for the eye-hand configuration. In

the successful cases, this set-up produces an ideal straight trajectory in the cartesian

16

CHAPTER 3. SYSTEM ARCHITECTURE

space. This trajectory represents an exponential decay in the error measurement as we

will see in chapter 7.

The implementation of the PBVS for Pepper is represented in fig.3.2 where the

features and the desired position of the object are obtained from the MBT. The hand

tracker instead of coming from the robot’s odometry comes from a roundels tracker. And,

the joints control in velocity is through a joint velocity control package deployed on

Pepper.

Figure 3.2: Closed Loop – PBVS Control Scheme for Pepper

There are two key aspects that are taken into account in our implementation:

1. The robot’s Kinematics and Dynamic Characteristics: Because Pepper’s arm has

only 5-D0F, in our implementation we decided to add 1-DOF to the servo. We do

so by extending the PBVS implementation to the robot’s base. In this way we

manipulate 6 joints for the servo.

For the first stage, we apply a combination of PBVS with eye-in-hand configurations.

Where now our current position is defined by the transformation matrix between

the torso and the headPitch joint, and the goal position is the one defined by the

17

CHAPTER 3. SYSTEM ARCHITECTURE

box. Once the robot arrives to the desired position, the second stage consists of a

combination of PBVS with an eye-to-hand configuration. Where now the current

position is the one given by the right hand and the desired position is where the

hand should arrive to grasp the box.

2. Tunning Lambda Gain: As described in chapter 2, an adaptive gain λ is used to

reduce the time of convergence in order to speed up the servo. This parameter is

arbitrary and manually set in the system. If its value is too high there is a risk for

oscillation at the time of converge, which compromises the precision of the system.

By using ViSP libraries we set the adaptive gain λ in the following way [21]:

(3.5) λ(||e||)= (λ0 −λ∞)e
−λ′0×||e||
λ0−λ∞ +λ∞

Where:

• λ0 =λ(0) is the gain in 0, which is for very small values of ||e||,
• λ∞ =λ||e||→∞λ(||e||) is the gain to infinity, which is for high values of ||e||,
• And, λ′

0 is the slope of λ at ||e|| = 0

In our case for the final PBVS we have λ0 = 0.02,λ∞ = 0.07 and λ′
0 = 3.

3.2 Software

For our implementation two options were considered, both of them including the Nao-

qiSDK of Aldebaran-Softbank and ViSP libraries. NaoqiSDK is the set of tools that

facilitates the creation of applications for Pepper robot [1], and ViSP stands for Visual

Servoing Platform which eases the prototyping and development of applications that

involve visual servoing techniques [7].

The first proposed design, besides the NaoqiSDK and ViSP libraries, required a set

of third party libraries and a bridge to connect all of them. Figure 3.3 shows the first

implemented approach. Some of the relevant third party libraries were:

• Metapod libraries: which were used to compute the kinematics of the robot. Meta-

pod stands for META-Programming Optimized Dynamics library [12]. Metapod

solves the robot dynamics algorithms by using R.Featherstone’s Spatial Algebra

[28] to describe forces, motions and inertias.

18

CHAPTER 3. SYSTEM ARCHITECTURE

• OpenCV: is the Open Source Computer Vision library [13] which is used to develop

real-time computer vision algorithms. Its main purpose for this version of the

implementation was for object recognition.

Figure 3.3: First Proposed Solution for the System

A bridge was needed to manage the tools and conversions between the third party

libraries and the NaoqiSDK. There is one bridge that accomplishes these purposes and

has been thoroughly tested on Romeo robot. The implementation is done by Inria-ViSP

labs, visp_naoqi [9]. The visp_naoqi bridge manages all the tools for Romeo robot,

specially for grabbing the images and estimating the camera parameters (intrinsic

and extrinsic). Additionally, it controls the robot in velocity and gets the Jacobians [9].

However, when adapting this bridge to Pepper many compatibility issues appeared with

the URDF of the robot (Unified Robot Description Format) and the integration of the

external velocity control package. Because this approach did not ease the implementation

of the grasping application for us, it was discarded at an early stage.

Figure 3.4 shows the communication diagram of the final system. In this approach

we use ROS, which is the Robot Operating System that facilitates libraries and tools

to help the development of robotic applications [15]. The greatest advantage of using

19

CHAPTER 3. SYSTEM ARCHITECTURE

ROS is that it already has the needed tools to manipulate Pepper robot so no bridge

implementation is needed.

Figure 3.4: Functional Design for Grasping Application

Some of the libraries used for this architecture are:

• naoqi_driver is a driver module between Aldebaran’s NAOqiOS and ROS. It

publishes all sensor and actuator data which we need to handle the behavior and

grasping tasks [14].

• Because the calibration of the kinematics of the robot are very inaccurate, we will

see in chapter 4 that a tracking technique is needed. For it, WhyCon libraries

are used. WhyCon offers vision-based localization capabilities specially for low

frame rate cameras, just as Pepper’s, achieving millimiter precision with very high

performance [11].

• vision_visp is a ROS node that provides ViSP algorithms as ROS components,

so it facilitates the conversion of data, especially the images format [16].

20

CHAPTER 3. SYSTEM ARCHITECTURE

Figure 3.5 is the graphical representation of the implemented system shown in fig.3.4.

It illustrates the different nodes for the application. The red block, pepper_grasping_pbvs,

shows where we implement the core of the application, presented in section 3.1. The nodes

in purple, where we implement/adapt the end-effector and object tracking algorithms.

The rest of the blocks represent the used libraries and borrowed applications required for

the implementation. Where, block 1 shows topics used from the NaoqiSDK, block 2 the

ones from naoqi_driver, from which we access the camera of the robot. Block 3 represents

the topics from WhyCon Libraries and block 4 the ones from vision_visp.

Figure 3.5: RQT Map for the Final Implemented System

Additional to these nodes, it is worth mentioning the use of MoveIt! package in ROS.

This is used to test the grasping behavior on Pepper robot and to quantitative measure its

limitations. MoveIt! offers simple but useful takes as inputs for pose vector (postition and

orientation). As a result, it generates a large number of potential grasp approaches and

directions taking into account the robots kinematic capabilities. Thanks to MoveIt! we

are able to compare our approach against the conventional motion planning techniques.

Before jumping into the comparison of the methods we will see in detail the tracking

algorithms that allowed us to get to the final PBVS application. Which leads us to the

following two chapters.

21

C
H

A
P

T
E

R

4
TRACKING THE ROBOT’S MANIPULATOR

In order to achieve a successful visual servoing getting the accurate position of

Pepper’s arm is crucial. Due to the inaccuracy of the Pepper’s kinematic model this

task is achieved with the help of vision. We place markers on its hand so that we

can compute the hand pose at every iteration of the process. As for any method where

the pose of a target is to be extracted, the very first step is to calibrate the camera.For

the hand tracking two methods were tested:

1. Quick Response Codes (QR codes) tracking from OpenCV libraries. Figure 4.1

shows the setup for the QR codes.

2. Roundels detection from WhyCon libraries. Explained in the following section.

Figure 4.1: QRCode Detection for Pepper

Both targets were automatically detected and gave the needed pose of the hand with

respect to the last arm joint, WristYaw. However, due to the low image resolution the

22

CHAPTER 4. TRACKING THE ROBOT’S MANIPULATOR

detection and tracking was more robust using the roundels from WhyCon. Nonetheless

by the end of this chapter we will compare both results. Figure 4.2 shows a simplified

map for the relevant nodes in this part of the implementation.

Figure 4.2: Simplified Map for the Implementation of the Hand Tracker Node in ROS

From this figure, BLOCK A represents the camera information obtained from the

naoqi_driver, BLOCK B represents the relevant topics from WhyCon libraries necessary

for the implementation, and BLOCK C represents the focus of this chapter, the tracking

application for the hand. The node is pepper_hand_pose, being the modified version of

[10] . In the following sections we will go into the details of the algorithm that allows us

to track Pepper’s right hand.

4.1 Pose Estimation using WhyCon Libraries

This method is solely based on the efficient detection of black and white roundels such

as the one shown in fig.4.3. For this section we use WhyCon libraries that facilitate the

detection and tracking of the pattern. However, we need to feed the system with the

position of the target. For this task we use the localization method recommended in

[40]. Once we have the 3D position of the patterns we build the transformation matrix

that describes the pose of the hand. In our approach we track Pepper’s hand using 4

patterns, as shown in fig.4.4 to add robustness to the method. For this approach the

roundels dimensions need to be known, inner and outer diameter. Once the pattern has

been detected and localized the process starts over to track the roundels position.

23

CHAPTER 4. TRACKING THE ROBOT’S MANIPULATOR

Figure 4.3: WhyCon Roundels. Im-
age Courtesy of [40]

Figure 4.4: WhyCon Roundels Placed on
Pepper

In summary, the detection combines a flood-fill segmentation algorithm with an

efficient thresholding technique [40]. The main advantage of this technique is that it

does not processes the entire image but only the area occupied by the pattern [31], which

guarantees its fast computational performance.

Before going into the localization step it is worth reviewing the algorithms concerning

the pattern detection.

• The fast flood-fill looks for segments of dark pixels using a bounding box of the

size of the input diameter [40]. They test the found roundel using the efficient

thresholding technique and applying a roundness test. The process is repeated

but now looking for bright pixels. Once the search is done it is considered that the

algorithm has found two circles, and so it compares the ratio of their area with the

previously inputed diameter to the system [40]. The pseudo algorithm can be found

in appendix A.3.1.

• The efficient thresholding consists on adapting the threshold value. It is defined

as τ and it can be sensitive to lightning conditions. In [40] they adapt it in a

granularity manner according to the binary search scheme. When the pattern is

successfully detected, the threshold is updated so that it can be used for the next

iteration, improving the precision of the segmentation [40]. τ is defined as:

(4.1) τ= µouter +µinner

2

where µouter and µinner correspond to the mean brightness of the inner and outer

segments.

24

CHAPTER 4. TRACKING THE ROBOT’S MANIPULATOR

Now that we have the detection done by WhyCon we need to determine the position of

each roundel. As recommended in [40] we localize the roundels in the following manner:

1. First the relative pattern position to the camera module needs to be calculated. At

this point it is assumed that the camera distortion does not affect the measurements

and that the intrinsic camera parameters are already known [31]. Following this

assumption, we extract from the covariance matrix eigenvectors the ellipse center

and the semiaxes to then transform them into a canonical camera coordinate

system [40]. Where the canonical form is a pinhole camera model with unit focal

length and no distortion.

2. These extracted parameters are used to get the coefficients of the characteristic

equation, which should result in a bilinear matrix of the form X T Q X , where Q is

called the conic and X represents each point lying on the ellipse [31].

3. The orientation and position within the camera coordinate is obtained by eigen

analysis [31]. The eigenvalues and eigenvectors of Q are represented by {λ0,λ1,λ2}

and {q0, q1, q2} respectively [40]. Then the position of the circle can be calculated

as:

(4.2) xc =± d0√−λ0λ2

(
q0λ2

√
λ0 −λ1

λ0 −λ2
+q2λ2

√
λ1 −λ2

λ0 −λ2

)
where d0 is the circular pattern diameter.

Now we have the position xc represented in a camera coordinate frame. But, we

are interested on getting the 3D position of Pepper’s hand. To achieve this we use four

circular patterns that will help us define the transformation between a global x and the

camera coordinate system xc, represented as:

(4.3) x= T(xc − t0)

where T is the similarity transformation matrix [40]. And t0 represents the coordinate

system origin. In our case we have x0, x1, x2, x3 to define t0 as the center of mass of all

the patterns. Then, the application calculates the transformation between the vector t0

(camera coordinate frame) and matrix T (global coordinate system), which is the matrix

that we are interested on. Figure 4.5 shows an example of the tracking with WhyCon

roundels.

25

CHAPTER 4. TRACKING THE ROBOT’S MANIPULATOR

Figure 4.5: WhyCon Roundels Placed on Pepper Following Hand’s Trajectory

From this setup we also obtain the transformation matrix from the torso to the

camera frame and from the torso to the WristYaw frame.

From the different tests the advantages of using this algorithm are:

• The detection shows to be robust to outliers. This allows us to have a better

precision in the tracking system

• And because the search looks at pixels that actually belong to the pattern, the

computational efficiency is notorious compared to the QR codes, making it ideal for

Pepper’s robot camera.

26

CHAPTER 4. TRACKING THE ROBOT’S MANIPULATOR

4.2 Comparison of Methods

In order to validate that the method offered by WhyCon indeed gives better results than

the QR codes we tested both markers on Pepper’s hand. For the tests we placed first the

QRcodes on the end-effector and run the QR code tracking application. This application

is based on the OpenCV libraries merged in ViSP. On a second stage, we placed the

WhyCon roundels on the end-effector and tried the ROS node. Figure 4.6 and fig.4.7 show

the results of the performance of each method we tried.

Figure 4.6: Comparison recognition Per-
formance, Accuracy Rate for Both Meth-
ods.

Figure 4.7: Comparison recognition Per-
formance, Runtime Detection for Both
Methods.

We can see that both methods have an acceptable updating time frame, under 200ms.

However, the roundels detection update is slightly faster than the QR codes (120ms vs

160ms).

Furthermore, the accuracy rate of both detection methods was measured. The Why-

Con roundels method shows to be 25% higher than the QR codes, meaning that it is

less likely to fail at detecting the pattern. We can see that the tracking with WhyCon

roundels outperforms in every way the QR codes in OpenCV, reassuring that it is the

right tracking method to track Pepper’s hand.

27

C
H

A
P

T
E

R

5
TRACKING THE OBJECT TO GRASP

Tracking the object to grasp at every iteration is as important as tracking the

end-effector. As we saw in chapter 3 for our approach we assume the object to be

static. Because we decided to apply a PBVS scheme our vector of desired features

need to be built after the 3D model of the target object. In ViSP they propose a hybrid

3D model-based tracker (MBT) that allows the tracking of a markerless object as long

as the CAD model is provided and the camera is previously calibrated [25]. The hybrid

MBT is defined as the following twofold process:

1. Extract the features of the object. For which we use the Kanadae-Lucas-Tomasi

method for feature extraction. These features reside inside the moving edges of the

object. In order to track the edges, they use a classical approach for edge detection

and tracking.

2. Determine the pose of the camera to match the features . In this step they use a

virtual visual servoing to match the tracked features with the obtained 3D model.

Figure 5.1 shows a simplified version of the borrowed hybrid MBT from ViSP. Where

BLOCK A represents the camera information extracted from the robot, BLOCK B
represents the node that manages the communication between the naoqi_driver topics

and the ones in ViSP for the detection and the tracking of the features. BLOCK C and

BLOCK D take care of the update and description of the object for the tracking. In order

to initialized the MBT we need to input the description of the object to grasp through a

28

CHAPTER 5. TRACKING THE OBJECT TO GRASP

CAD file. This CAD file feeds the description to these two blocks. And, fig.5.1 (1) and (2)

show where the implementation of the KLT and edge tracker methods reside.

Figure 5.1: Simplified MBT Implementation in ROS

The 3D model input files needed by blocks C and D are built following the guidelines

in [21]. These files provide the points coordinates and faces of the object to be tracked,

along with the camera parameters. These descriptions are required to start the tracking

after a couple of mouse clicks. Once initialized, the model is automatically detected and

tracked. This task allows us to instantly determine the homogeneous transformation

matrix of the object with respect to the robot’s camera frame. Figure 5.2 shows the

markerless hybrid MBT structure.

29

CHAPTER 5. TRACKING THE OBJECT TO GRASP

Figure 5.2: Model Base Tracker KLT + Edge Detection

The following sections give a summary on how this method works. We also show some

of the tests we ran that helped us decide on this technique.

5.1 Extract the Features of the Object

As we previously saw the hybrid method concerns the features of the object and the

tracking of edges, this combination adds robustness to the tracking.

5.1.1 Kanade-Lucas-Tomasi (KLT) Feature Extraction

This is a relative new algorithm that extracts the features of a textured object [42]. The

algorithm consists of: 1) selecting features and 2) tracking these features from frame to

frame. They define an image sequence as:

(5.1) I(x+ y+ t+τ)= I(x−ξ, y−η, t)

Where the first image is taken at t+τ and is obtained by moving every point in the

current image t. And, the displacement motion is denoted as d = (ξ,η) of the point

x = (x, y) between time instants t and τ [32]. Instead of tracking pixels, in [42] they track

windows that enclose enough textures. In order to handle the velocities they model an

affine map, so that the different velocities are associated to different points in the window

as shown in fig.5.3.

30

CHAPTER 5. TRACKING THE OBJECT TO GRASP

Figure 5.3: KLT Affine Map. Image courtesy of [42]

Now, redefining the left term in eq.5.1 as J(x) and the right one as I(x−d) we can

express the new image model as :

(5.2) J(x)= I(x−d)+n(x)

where now we introduce the noise term n [42]. Therefore, the displacement vector d is

chosen to reduce the error defined as:

(5.3) ε=
∫

W
[I(x−d)− J(x)]2ωdx

where ω can be:

1. In the best case scenario set to 1,

2. Be a Gaussian function with the emphasis on the central area of the window, or

3. Depend on the image intensity.

Because we are looking for regions with enough textures, in [42] they agreed that the

richer regions are the ones located in the corners, edges or simply those that show high

second-order derivatives. These regions are the ones enclosed by the window, for which

we apply the theory of Harris corner detector.

The algorithm is summarized in fig 5.4. Where, to initialize the process for a template

image, J(x), we extract the neighborhood of Harris point and set the initial displacement

as (0,0), then iterate in the following steps:

1. Take a patch and extract the neighborhood of x Harris point with current shift d,

I(x−d)

2. Estimate the noise n(x),

31

CHAPTER 5. TRACKING THE OBJECT TO GRASP

3. Compute the gradients ∇I at the translated coordinates

4. Estimate the displacement, and update the the translation estimate (d ← d+∇d),

5. Test the convergence ||∇d||6 ε and iterate again,

Figure 5.4: KLT Process Summary. Image courtesy of [42]

5.1.2 Edge Tracker

For this part, ViSP libraries offer an edge detection with gradient filter method. This is

one of the most popularly used on edge detection.

The simplest approach is to apply the central differences from the input image or its

smoothed version [36], and then apply a Sobel filter to it.

The edge detection process is summarized as:

32

CHAPTER 5. TRACKING THE OBJECT TO GRASP

Figure 5.5: Edge Detection Method. Images courtesy of [8]

Where, from the illustration on fig.5.5:

1. A list of points is built along the normal to the edge,fig 5.5 (1).

2. For each point the convolution with the filter is calculated, fig 5.5 (2).

3. If the convolution result is high enough and close to the previous one then is

considered a new edge point, fig 5.5 (3).

4. Finally, regarding the moving edges method we remove the outliers and define the

line (as in fig 5.5 (4)) with the following equations:

(5.4) ai+b j+ c = 0 and i cos(θ)+ j sin(θ)−ρ = 0

The hybrid scheme is achieved by stacking the features extracted from the KLT

and the edge tracker into the vector ṡ adding them into a larger interaction matrix of

size nd ×6 that relates the object to the camera. Where n belongs to the number of

33

CHAPTER 5. TRACKING THE OBJECT TO GRASP

features and d represents the features dimension. These features are composed of a set

of distances between local point features and the contours of the global 3D model [25].

To initialize the tracker the parameters from the CAD and XML files are needed.

Once these parameters are input into the system the actual pose of the object can be

calculated. A detail of the parameters can be found on appendix A.4.

5.2 Getting the Pose with Respect to the Camera

For this part of the algorithm they obtain the point transfer from the image homography.

If we use the point transfer to 2 p =2 H1
1 p, where 2H1 is the image homography,

we obtain (xi, yi). With which we can represent the interaction matrix that links the

variation of the point position to the camera motion, usually denoted as L(2e1) [25]. This

iteration matrix has the form of the one calculated using the IBVS approach.

In order to know the pose between the camera and the world coordinate we can follow

this definition:

(5.5) �nMW = ànMn−1
án−1MW

where 1MW is obtained from the 3D model files input in sec 5.1 [21]. This approach is

only possible if all the tracked points remain in the field of view and if the number of

tracked points remain constant. For example, if only 50% of the initial points remain

then a new reference image is needed for the points to be extracted [25]:

(5.6) nMW =n MRk
Rk MRk−1 ... R1 MR0

R0
MW

5.3 Testing the Method

In order to test this algorithm for our implementation we compare it with the tracking

method explained in chapter 4 expecting to obtain similar results. For this tests rounds

we care about comparing the translation and rotational vectors obtained from the

transformation matrices.

Since the hybrid MBT needs the 3D model of the object, we created the corresponding

files that describe a tabasco box of 8×3×3 inches.

For the tests, the WhyCon markers explained in chapter 4 were placed on the box and

the translational and rotational information was extracted. Simultaneously, the model

based tracker proposed by ViSP was put to run so that the same information could be

obtained.

34

CHAPTER 5. TRACKING THE OBJECT TO GRASP

Figure 5.6: Comparison on the Tracking- Translation Vectors

Figure 5.7: Comparison on the Tracking- Rotation Vectors

As seen in figures 5.6 and 5.7 the results are similar, both trackers show the same

behavior. One of the greatest advantages noticed during the tests was the invariant

behavior of the hybrid MBT to occlusions on the box features. As previously explained,

we placed the roundels on the box.Fortunately, the roundels did not affect the extraction

of features. Additionally, the edge tracking served to add robustness to the process.

Table 5.1 shows the error measurements for the different components of the transla-

tional and rotational vectors. From the table we see that the errors are very small for

both vectors.

35

CHAPTER 5. TRACKING THE OBJECT TO GRASP

Table 5.1: Accuracy of the Tracker in Comparison with Whycon (meters and degrees)

Tx Ty Tz Rx Ry Rz

Mean 0.053 -0.066 -0.152 -0.017 0.088 0.15

Std 0.012 0.016 0.0554 0.018 0.019 0.023

Max 0.061 -0.038 -0.083 -0.001 0.100 0.28

On the downside, during the different testings we noticed the following disadvantages:

• The initialization needs to be as accurate as possible, otherwise the tracker fails.

• If there is not enough contrast around the contours or the occlusions are too large

then it is most likely to fail. Because of the importance on the features amount, the

choice of the object to grasp is important for the performance of the algorithm.

• It is very sensitive to illumination changes.

• It is less computational efficient than the WhyCon method. In comparison it has

a delay of around 1 second. This delay can be handle by using a higher speed

communication channel between the external processor and the robot. Or, by

deploying the algorithm as a package inside the CPU of the robot. On the other

hand, the tracker works well with small motions of the object. Because for our

purposes the box is to be static we assume this risk in our implementation. Figure

5.8 shows the tracking results.

Figure 5.8: Final result for the Box Tracking

36

C
H

A
P

T
E

R

6
CONTROLLING THE JOINTS IN VELOCITY

I t is necessary for a successful visual servoing to control the robot’s joints in velocity.

Aldebaran offers a series of methods for Cartesian control on Romeo and Nao

but not for Pepper robot [3]. However, Inria labs as part of their visual servoing

platform offer a package that can be deployed on Pepper called pepper_control [6].

6.1 Pepper Velocity Control

As any other package that controls the joints in velocity, pepper_control manipulates

the end-effector of the robot by using a inverse kinematics solver. The end-effectors can

be controlled individually or in parallel.

In general, the geometric model of the robot allows to get the positions of an effector

such as: X = [Px,Py,Pz,Pw,x,Pw,y,Pw,z], where the general expression of the geometric

model is defined as:

(6.1) X = f (q)

Being the direct kinematic model its derivative [3]:

(6.2)
Ẋ = δ

δt
f (q)q̇

= J(q)q̇

37

CHAPTER 6. CONTROLLING THE JOINTS IN VELOCITY

where we know that J(q) is the Jacobian matrix. Because the main purpose is to control

any end-effector and deduce the joint position the inverse kinematic is defined as:

(6.3) q̇ = J−1 Ẋ

It is usual for J not to be invertible because is not a square matrix. In the case of

pepper_control they use the Moore-Penrose pseudoinverse to solve this problem.

While testing the package pepper_control we noticed some aspects that need to be

taken into consideration:

• Before using the package make sure that this is running. One of the disadvantages

is that since it is not one of Aldebaran modules this needs to be manually started

before being used.

• If a robot singularity configuration is found then a great velocity could be sent to

the robot, letting Pepper to lose balance or if the safety is disabled, to crash.

• In the best case scenario the package should be directly connected to the sensors

and actuators, just as the Aldebaran DCM module does for Romeo and Nao. Instead,

the package works as a service for the ALMotion module. This extra connection

means a small delay in the sending/reading data from the sensors. Fortunately,

this delay is small enough that can be neglected and does not represent a great

error for the servoing performance.

In order to test pepper_control we implemented a simple program to send and receive

velocities in a sinusoidal form. In fig.6.1 the sent velocity is represented in green. And,

the retrieved velocity from the sensors in represented in blue.

38

CHAPTER 6. CONTROLLING THE JOINTS IN VELOCITY

Figure 6.1: Pepper Velocity Control for
Left and Right Elbow

Figure 6.2: Pepper Velocity Control Er-
ror Measurement

From fig.6.2 we can see that the error is really small. Resulting in an average error

of 3.24×10e−1m/s. Because of this outcome we rely on the package to be used to control

Pepper’s joints in velocity in our implementation. The example shown in fig.6.1 is set to

manipulate the XlbowYaw joints. For the servoing task, first we control the base and then

in parallel the five joints of the right arm: RShoulderPitch, RShoulderRoll, RElbowYaw,

RElbowRoll, RWristYaw, as shown in fig.6.3.

Figure 6.3: Pepper’s Right Arm Joints. Image courtesy of [1]

39

C
H

A
P

T
E

R

7
RESULTS FOR PBVS ON PEPPER

Up to this point we have shown the different modules that lead us to achieve a

PBVS control technique for Pepper. We have seen the method that allows us

to track Pepper’s hand using roundels detection, the markerless hybrid MBT

method to detect and track the box, how we control Pepper joints in velocity and the

mathematical model to implement the core of PBVS.

In this chapter we present the final results of the unified system. A demonstration

video can be found in:

• https://www.dropbox.com/s/dv3slax949tnllu/PepperVS.mp4?dl=0

And the code can easily be accessed and downloaded from:

• https://paolaArdon@bitbucket.org/paolaArdon/master_thesis_vs_pepper.git

In order to test the implementation a Lenovo Flex 2-14 with Ubuntu 14.04 LTS, core

i7 was used. The Aldebaran version for the NaoqiSDK and the system image inside the

robot was 2.4.3.

40

https://www.dropbox.com/s/dv3slax949tnllu/PepperVS.mp4?dl=0
https://paolaArdon@bitbucket.org/paolaArdon/master_thesis_vs_pepper.git

CHAPTER 7. RESULTS FOR PBVS ON PEPPER

As we previously saw in chapter 3, we implement a closed loop technique combining

PBVS and eye-hand configurations.

Figure 7.1: Pepper 2D Cameras Specifica-

tions. Image courtesy of [1]

For our vision sensor we are using

Pepper’s bottom 2D camera. Both cam-

eras have a vertical field of view (FOV)

of 44.30°and a horizontal FOV of 57.20°[1],

as observed in figure 7.1. Section 7.1 shows

the results of implementing the PBVS by

manipulating only the arm joints.

These results are then compared to the

ones obtained by using conventional path

planning techniques. And section 7.2 de-

scribes the outcome of adding an extra joint to the servo, which represents the final

version for our system.

Figure 7.2 shows the steps to run the final implemented PBVS. These steps are:

1. To initialize the MBT by clicking on the corners of the box. These are the points

that we defined in the 3D model file. Once the MBT is started it calculates the

error from the actual position of the robot to the previously saved desired position

of the box, defined as cMdBox homogeneous matrix,

2. Using this matrix the velocities are calculated and applied to the base,

3. Once the error is small enough or 0 the base stops. An open loop motion process is

applied to the right arm, so it goes inside the camera frame,

4. Now Pepper is able to see both the arm and the box. The hand position node is

started and the matrix eMh that describes its 3D pose is extracted,

5. Once the position of the hand and the box are known, we extract the previously

saved desired offset of the hand with respect to the box, dhM. The PBVS servo is

started to take the arm as close to the desired position as possible,

6. Once the error is beneath the threshold Pepper closes its hand and grasps the

box. Raises the arm and tracks a human using modules from Aldebaran for people

perception+tracking (ALPeoplePerception + ALMovementDetction + ALEngage-

mentZones) and delivers the box. Please go to appendix A.5 for a summary on how

Pepper follows people.

41

CHAPTER 7. RESULTS FOR PBVS ON PEPPER

Note: a detail of the matrices can be found in appendix A.2.

Figure 7.2: Process to Run PBVS application on Pepper

7.1 PBVS with 5-DOF

As we remember, Pepper has a total of 20-DOF. From which 5-DOF belong to the arm. In

most cases it is impossible to completely satisfy the desired position and orientation of a

6-DOF end-effector with a 5-DOF manipulator. This does not mean the task is impossible,

yet it will not be able to grasp the box at all times.

From chapter 3 we learned that MoveIt! easily allows us to test motion planning and

analyze the inverse kinematics (IK) of a given robotic system. For these purposes MoveIt!
offers an easy to integrate solution that allows the user to input the robotic description

files along with a series of actions to carry. In our case we are interested on the IK

analysis on Pepper’s arm. In this manner we can predict the positions to which Pepper

can potentially grasp by using 5 joints. Moreover, MoveIt! gives us a basis to compare

our PBVS application results against the ones given by motion planning techniques.

For the simulated environment in MoveIt! we use Pepper’s URDF (Unified Robot

Description Format) along with a model of a box, so that we can reproduce the grasping.

Figure 7.3 shows a comparison of the real world scenario versus the one in the simulator.

42

CHAPTER 7. RESULTS FOR PBVS ON PEPPER

Figure 7.3: Real robot and MoveIt! Simulator to calculate Affordable Positions for the
Box to be Grasped

Before going into the evaluation process it is worth mentioning that we do not consider

grasping quality nor quality of the movement of the object while being lift-up.

For this part of the process, we count a successful grasp when from the full set of

different simulations done in MoveIt! the simulated robot is able to reach and lift-up the

box. On the other hand, a grasp is considered to be failed if the simulated robot is not

able to reach the desired position. The simulated tests are done following these steps:

1. Generate a random reachable position for the box,

2. Start the IK analysis on Pepper to determine if the box can be grasped or not,

3. If the box can be grasped, generate the possible kinematics solutions that would

allow Pepper to successfully reach and grasp the box

4. Otherwise, generate another position/orientation for the box and iterate on the

process,

In total we generated 144 different positions for the box, only for 33 of these positions

the system was able to find a solution. This represents a 23.20% of success rate (fig.7.4).

As expected, the positions where the system came with a positive outcome were the ones

where the box was placed close to Pepper’s arm.

43

CHAPTER 7. RESULTS FOR PBVS ON PEPPER

Figure 7.4: Graphical Representation of Success vs Failed Attempts for Grasping with
Motion Planning

The average time for the system to find a solution was 2.46 seconds, as seen in fig 7.5.

On the other hand, when MoveIt! could not solve the system it tried for as long as 23.14

seconds ending up with 76.80% of failed attempts.

Figure 7.5: Time Taken to Succeed or Fail for Grasping

We now have an estimation of what Pepper can do by only manipulating the arm and

so we can test our, so far implemented, PBVS with eye-to-hand configuration approach.

44

CHAPTER 7. RESULTS FOR PBVS ON PEPPER

In the real scenario, we do not consider to measure quality of grasp or movement of the

object while being lift-up, but the number of successful attempts.

For our purposes we consider a successful grasp if the box is not dropped by the

end-effector during the reaching process and can be lift-up. And, we consider it to be

failed if the box was dropped in the process or if it was approached correctly but the

robot did not lift it up.

Figure 7.6: Results of Grasping Attempts with Pepper

– 5-DOF

Out of 15 cases with dif-

ferent box positions only on 3

of them Pepper was able to

successfully grasp the box. For

these successful cases the ini-

tial positions of the box w.r.t

the camera frame were: a) x =
0.1099,y = −0.053,z = 0.347 b)

x =−0.069,y=−0.034,z = 0.3458

c) x = 0.0363,y=−0.0634,z = 0.525, which are close to the Pepper’s arm. Figure 7.6 help

us visualize the performance of the implemented control technique.

For this version of the PBVS we obtain a sensitivity rate of only 40%, which means

that Pepper is most likely to fail at grasping the box. Only 20% of the time Pepper was

able to accurately predict and grasp it. As expected, the servo is not as efficient as the

motion planning technique. In this case, the average time for Pepper to reach the desired

position (when possible) was 33 seconds while using a static gain λ= 0.04. Figure 7.7

shows an example of a successful grasp done with Pepper using 5-DOF.

45

CHAPTER 7. RESULTS FOR PBVS ON PEPPER

Figure 7.7: Successful Grasp with 5-DOF.

Figure 7.8 shows the error decrement of one of the successful cases. As it can be seen,

the error never reaches 0 for the rotational and the translational staying rather in steady

state. For this implementation version, the threshold error in the translational was set

to 11 mm and the rotational threshold to 14 degrees, which are high threshold values for

the task.

Figure 7.8: Mean Square Error for 5-DOF

46

CHAPTER 7. RESULTS FOR PBVS ON PEPPER

Moreover, fig 7.9 shows the applied velocities to the joints. Where, the system arrives

to a convergence, however the last joint RWristYaw never converges. This is because it

stays in the calculation state trying to reach a position is physically impossible for the

joint, which clearly influences on the big threshold for the errors.

Figure 7.9: Right Arm Joints Velocities

In literature many analytical solutions can be applied for inverse kinematics that

do not fulfill the required DOF, as in our case. These techniques vary depending on

the missing DOF, ranging from optimization techniques to satisfying the orientation

vectors.However, these techniques are proven to work on motion planning techniques

and can be computational expensive for real time applications.

7.2 PBVS with 6-DOF

Instead of manipulating the orientation vectors we decided to satisfy the number of DOF

required for a successful grasping. We do this task by extending the PBVS to the base of

the robot. Given our modular implementation, we simply add a function that implements

a PBVS with eye-in-hand configuration. In this way, the robot successfully travels to a

position where is sure that the offset between the box and the camera is small enough

for process in section 7.1 to start.

Now we take into account the transformation matrix between the HeadPitch and

the torso of the robot (which is for now our {h} frame) to calculate the velocities that

47

CHAPTER 7. RESULTS FOR PBVS ON PEPPER

need to be applied to the base in order to get to the desired position. Contrary to the

previous approach were we set a static gain for the control scheme, for this version of the

implementation we use an adaptive gain for both PBVS tasks. Figure 7.10 shows the

behavior of the velocities applied to the base.

Figure 7.10: Velocities for Pepper’s Base

To test the base PBVS, the robot was placed 50cm away from the box, getting to the

desired position in 27 seconds while using an adaptive gain of λ0 = 0.02, λ∞ = 0.03 and

λ′
0 = 3 for the base task.

Now we can test both PBVS tasks. For this experiment we used λ0 = 0.02, λ∞ = 0.08

and λ′
0 = 3. Figure.7.11 shows the new confusion matrix for 6-DOF with a total of 25

test runs. With the addition of 1-DOF to the servo, out of 25 trials Pepper successfully

grasped 17. Improving the sensitivity rate from 40% to 80%. Which means that now we

rarely miss the box.

Figure 7.11: Results of Grasping Attempts with Pepper – 6-DOF

48

CHAPTER 7. RESULTS FOR PBVS ON PEPPER

During the different tests it was noticed that the attempts where Pepper miss-

predicted the goal position were the ones where the hybrid MBT fails. Either it gets lost

because of illumination, misses features and/or is not correctly initialized (remember

we manually initialize the MBT with a couple of clicks). Figure 7.12 shows the error

measurements in cm and rad. Where now we have an average error of 1 mm in and

5 deg. Versus the 11 mm and 14 degrees of section 7.1. Furthermore, now we see the

exponential decay of the error.

Figure 7.12: Mean Square Error with 6-DOF

It is worth noticing that each iteration is done at 20Hz, so we process the signal every

0.05 seconds. In this case, the task error arrives to convergence in 17 seconds, which is

approximately half of the time it took in section 7.1. A better detailed image of the decay

on the tasks error for the arm PBVS can be seen on fig 7.13.

49

CHAPTER 7. RESULTS FOR PBVS ON PEPPER

Figure 7.13: Task Error for the PBVS on Pepper

Now that we have improved our performance we want to know the right tunning of

the parameters so that our approach is as efficient as possible. Given our implementation

we care about tunning the adaptive gain values. Figure 7.14 shows the output of the

applied velocities when λ0 = 0.06, λ∞ = 0.07 and λ′
0 = 3 . The convergence time in this

case is approximately 25 seconds. In order to achieve the exact position of the box, we

consider a 4mm and 3 deg threshold error.

Figure 7.14: Joints Velocities for λ∞ = 0.07

Now let’s see what happens when we use : λ0 = 0.06,λ∞ = 0.1 and λ′
0 = 3 As seen

50

CHAPTER 7. RESULTS FOR PBVS ON PEPPER

in fig.7.15 the convergence time is around 12 seconds. In this case the error thresh-

old increased to 6mm and 8 deg so that Pepper reached to the box without dropping

it.Remember that we do not have tactile sensors to get feedback.

Figure 7.15: Joints Velocities for λ∞ = 0.1

On the other hand, if the value is set as low as λ∞ = 0.02 the convergence time

increases to 30 seconds. However, the error threshold is set to 1mm and 1 deg, meaning

that we have a more accurate result.

Figure 7.16: Joints Velocities for λ∞ = 0.02

In all the cases of changing our adaptive gain the system arrives to the goal position

traveling a relative straight line in the Cartesian space, as shown in fig.7.17. For the case

51

CHAPTER 7. RESULTS FOR PBVS ON PEPPER

shown in the figure the adaptive gain was :λ0 = 0.6, λ∞ = 0.07 and λ′
0 = 3. This trajectory

demonstrates that the method follows the optimal solution to the goal position while

keeping stability.

Figure 7.17: System Behavior for PBVS . Goal position: x = 0.104; y= 0.340; z = 0.0670

Table 7.1 shows a summary of the results from varying the λ∞ parameter from the

adaptive gain. Where we can compare the threshold values chosen for the translational

and rotational errors , ||eut || and ||euθ || respectively and their convergence time.

Table 7.1: Summary for Tunning Parameters

λ∞ ||eut || ||euθ || Conv. Time

0.02 1 mm 1 deg 30 sec

0.07 4 mm 3 deg 25 sec

0.1 6 mm 8 deg 12 sec

52

C
H

A
P

T
E

R

8
CONCLUSIONS

This work presents a new application for Pepper robot: grasping objects using

visual servoing techniques. To the date, there are not reported results of visual

servoing techniques implemented on Pepper with the purpose of grasping objects.

For our implementation we do not measure the grasping quality based on the object

movement while being lift-up, nor on how the hand approaches the object. Rather, we

count a successful grasp if Pepper was able to reach, grasp and lift up the box without

dropping it.

From our implementation, we see that the combination of the hybrid markerless

MBT for the box, the roundels tracker for Pepper’s hand along with an adaptive gain for

the control scheme allows the final system to be notably robust and efficient. Given the

modularity the implementation it can adapt easily to other humanoid robots and objects.

Despite the system limitations, our application demonstrates to be reliable and suitable

for real time tasks.

8.1 Discussion

For our purposes we discuss the different modules that build our application: the two

tracking systems and the core of the control scheme. Regarding the hand tracking system,

on one side, they are discrete looking on Pepper’s hand. On the other, the method adds

precision to the calculations of the pose of the hand while not representing a compu-

tational burden for the system. Which is key for real time applications. Additionally,

53

CHAPTER 8. CONCLUSIONS

thanks to the adaptive thresholding the tracker does not get affected by light changes.

Moreover, the hybrid markerless MBT that we use to track the object shows to be

adequate for the application despite our low frame rate . Where the most important

advantage is its robustness to camera occlusions by the robot’s hand when approach-

ing/grabbing the object. Furthermore, with the right conditions and communication

channel between the robot and the external processor, this MBT shows to be invariant to

the small movements provoked by the hand-object collision.

Thanks to the adaptive gain the implemented PBVS shows relatively small converg-

ing times. Where the whole task, meaning approaching and grasping the box, takes

an average of one minute to complete. By comparing the results of chapter 7 section

7.2 with the ones presented in section 7.1 we clearly see difference for the velocities

discontinuities and oscillations. From the results of the varying λ∞ we observe that the

applied velocities are high when the error exponential decrement is high and small when

the error decrement is small. Where the oscillations are directly related to the λ0 or λ∞
gain value.

From the summary table 7.1 in chapter 7 the difference in the system performance

when varying the gain is notorious. The greater the λ∞ value the faster the system

arrives to a convergence time. However, also the greater the threshold for the error so

that the robot does not drop the box during the reaching process. In the example given

in table 7.1 we see that the system achieves a precision of 1 mm and 1 deg when λ∞ is

really small, however it takes around half a minute to grasp the box. For our purposes

we care more about precision than computational time. Therefore we use a combination

of λ∞ = 0.07 but a λ0 = 0.02. In this manner, we achieve a relative small error slightly

faster but reducing the oscillations when the error is small so that we have a higher

precision when grasping ,taking 28 seconds to complete the task. Contrary to the results

in section 7.1 where we took 33 seconds to complete the grasping with big threshold

values.

After the different tests we can assure the system is stable for real time applications,

specially taking into account the possible perturbations caused by these varying gains.

This stability is mainly demonstrated when performing the PBVS for the base. For

which, there is a high gain at the beginning of the task that then switches to a low gain

when the robot gets closer to the box. This change produces some oscillations, that if not

correctly applied, may affect the object tracking due to the motion of the camera. Hence,

the importance of parameter tuning to avoid instability in the system.

This work also demonstrates the advantages of using a visual servoing technique

54

CHAPTER 8. CONCLUSIONS

above traditional path planning algorithms for grasping purposes. Specially on a system

which end-effector degrees of freedom are less than 6. For our system, the PBVS approach

shows a success rate of 48.8% higher than the conventional motion planning methods.

As a summary, table 8.1 compares the results from using motion planning with

MoveIt!, our 5-DOF PBVS and the final 6-DOF PBVS.

Table 8.1: Comparing MoveIt!, 5-DOF PBVS and 6-DOF PBVS

MoveIt 5-DOF PBVS 6-DOF PBVS

Time Performance (sec) 2.6 33 28

Success Rate 23.20% 20% 72%

Sensitivity Rate 1 0.4 0.8

As observed in this table, the final PBVS outperforms the other two except in com-

putational time. As we can remember from both approaches, 5-DOF PBVS and 6-DOF

PBVS, besides adding a joint to the servo we modified our control scheme from a static

gain to an adaptive one. This change helped us achieve a faster converging time regard-

ing the PBVS for the arm. It is worth noticing that this timing does not count the PBVS

for the base, in the case of 6-DOF PBVS, where it takes an extra 30 seconds to arrive to

the box position. Nonetheless for our purposes we choose precision over computational

efficiency.

8.1.1 Disadvantages of the Implemented Method

Despite the good performance of the final implementation, the system has some disad-

vantages that need to be taken into account:

1. Unfortunately, because we are relying on the patterns to locate the hand, the end-

effector position/orientation is limited to an angle where the camera can retrieve

the image of the roundels.

2. The MBT is sensitive to illumination changes, which causes inaccurate calculations

for the position of the box.

3. The MBT does not work properly under 5GHz frequency for the communication

channel. There is a great tendency to loose features, therefore to miscalculate the

position of the box.

55

CHAPTER 8. CONCLUSIONS

4. As expected, the larger the distance from the box the harder it is for the tracker to

be initialized. After many testing rounds we found that 45 cm represents a safe

distance for Pepper to start the PBVS for the base.

5. Because we do not have control of the fingers in Pepper’s hand, in order to save the

goal position we need to take into account the length and the current position of

the fingers, so that when Pepper is approaching the box the robot does not drop it.

6. The current implementation only takes boxes as input 3D models.

7. Additionally, the current implementation is proven to work with the 2.4.3 Naoqi

version but not on 2.5. Among different factors,the most important is that the

package that controls the joints in velocity is not compatible with the newest

release of the NaoqiSDK.

8.1.2 Comparison with Other Approaches

To the date there are not reported results of any method applied on this robotic platform

that tries to achieve a grasping behavior. However, for the sake of evaluating the validity

of our application, we can check the results with similar methods applied on similar

robots. In [39] we find a similar work for Nao robot. They also implement a closed loop

PBVS with the purpose of grasping a box. For the implementation in [39]: Nao has 4-DOF

on its arms, only receives feedback from the vision sensors and has the same camera

specifications as Pepper. They achieve the servo task by manipulating the head and arm

joints,giving them a total of 6-DOF. To track their target object they use a moving-edge

MBT that tracks solely the edges of the box. In their approach they use the kinematics

of the robot to get the joint positions. Moreover, they use a static gain for the control. On

their final results, they report a convergence time of 54.67 seconds with a threshold error

of 5cm and 3 degrees, achieving a grasping success rate of 52.6%.

Even though they achieve a faster convergence time than our approach on a different

robot, our combination of algorithms allows us to have a better precision and a higher

success rate with Pepper.

56

CHAPTER 8. CONCLUSIONS

8.2 Future Work

We consider our application to have a great potential, giving room to numerous extensions.

Some of them being:

• The biggest setback in terms of processing is the tracking of the box features, which

is also the main cause of failure in the system when grasping. The communication

channel has a key role in this task. Therefore it would be nice to integrate this

tracker into the robot’s CPU instead of having it running on the external computer.

• At the moment Pepper is able to grasp only boxes that fit in its hands. In the

same manner for future extensions, cylindrical objects could also be grasped by

implementing a parallel module.

• Instead of only manipulating one hand, both hands could be integrated into the

servo. Hence, Pepper would be able to lift greater objects in terms of surface but

always taking into consideration the weight constraints.

• Another nice fix would be to remove the visual markers on the hand and integrate

a MBT to track its position instead.

• For the first step: the PBVS for the robot’s base, the box needs to be inside the cam-

era frame. A nice extension would be to add a TLD (Tracking Learning Detection)

tracker so that it looks for the box in the room before initializing the MBT.

• When is going from the base PBVS to the hand PBVS,it would be good to implement

a parallel module that applies IBVS to keep track of the hand while making sure

the box is still in the camera frame (instead of just applying an open-loop motion).

• In terms of implementation, the modules are triggered manually. It would be

good for demo purposes to add speech recognition so that Pepper follows a voice

command to search and grasp the box.

57

A
P

P
E

N
D

I
X

A
APPENDIX A - PARAMETERS DETAILS

This chapter shows in detail the camera calibration and the different homogeneous

matrices used in the implementation.

A.1 Camera Calibration Parameters

Camera parameters for perspective projection without distortion:

(A.1)
px = 273.4914551 py = 275.7431335

u0 = 155.1124547 v0 = 126.0573575

Where (u0,v0) are the coordinates of the principal point in pixel; and (px, py) are the

ratio between the focal length and the size of a pixel.

A.2 Matrices Details

A.2.1 Homogeneous matrix eMh

Transformation matrix between the hand the RWristYaw:

(A.2)


0.9904602583 0.1154415606 −0.07524442084 0.065964

−0.1185634218 0.9922029043 −0.03842019991 −0.041977

0.07022244505 0.04697491713 0.9964246913 0.063426

0 0 0 1


58

APPENDIX A. APPENDIX A - PARAMETERS DETAILS

A.2.2 Homogeneous matrix dhMof f set

Transformation matrix of the desired offset between the hand the Box:

(A.3)


0.9904602583 0.1154415606 −0.07524442084 0.065964

−0.1185634218 0.9922029043 −0.03842019991 −0.041977

0.07022244505 0.04697491713 0.9964246913 0.063426

0 0 0 1


A.2.3 Homogeneous matrix cMdbox

Transformation matrix of the desired offset between the box and the camera frame for

the base PBVS:

(A.4)


−0.8081692083 0.5869575788 −0.04840796853 0.041674

0.2710923161 0.2977708672 −0.9153368051 −0.004123

−0.5228493922 −0.7528700494 −0.3997689355 0.40209

0 0 0 1



59

APPENDIX A. APPENDIX A - PARAMETERS DETAILS

A.3 Pseudo Algorithms

A.3.1 Fast Flood-Fill Algorithm

Algorithm 1: Flood-fill segmentation
Data: (p,ρexp, class): p– starting pixel position; ρexp – expected area to bounding

box dimensions ratio; class– searched segment type (white or black)

sid ← sid+1 // increment segment ID

qold ← qend //store previous queue end

pixel.class[p]← p //push its position to the queue

//#1 perform the flood fill search

while qend > qstart do
q ← queue[qstart ++] // pull pixel from the queue and check its neighbours;

foreach offset ∈ {+1,−1,+ω,−ω} do
r ← q+ offset;

if pixel.claass[r] = unknown then
pixel.class[r] ← classify(Image[r],τ)

if pixel.class[r] = class then
queue[qend ++]← r;

pixel.class[r] ← sid;

update υmin,υmax,νmin,νmax fro ru, rv

go back to the beginning of current section;

valid ← false;

//#2 test for the pattern size and roundness;

if s > min.size then
υ← (υmax +υmin)/2 //segment center x axis;

ν← (νmin +νmax)/2 //segment center y axis;

bυ← (υmax −υmin)+1 // estimate segment width;

bν← (νmax −νmin)+1 // estimate segment height;

ρ← ρexpπbυbν/4s−1 // calculate roundness;

if ρtol < ρ < ρtol then

µ← 1
s
∑q−1

end
j=qold

Image[j] // mean brightness;

valid ← true // mark segment valid
Result: (υ,ν,bυ,bν,µ,valid): (ε,ν) – segment center; (bυ,bν) – bounding box ; υ –

average brightness ; valid – validity

60

APPENDIX A. APPENDIX A - PARAMETERS DETAILS

A.4 KLT and Edge Tracker Parameters

Tables A.1 and A.2 show the initialization parameters from the XML and CAD files for

the 3D model tracker:

Table A.1: KLT Settings

KLT Settings

Window Size 5 X 5 pixels

Mask Border 5 pixels

Max num of features 1000

Max dist between points 5 pixels

Harris free parameter 0.01

Block Size 3x3 pixels

Table A.2: Edge Tracker Settings

Moving Edges Settings

Convolution Mask 5 X 5 pixels

Likelihood test ratio 1000

Contrast tolerance 50% and 50%

Sample Step 4 pixels

Good moving threshold 40%

A.5 Pepper Follow People

This implementation was done following the model of the FollowPeople from

visp_naoqi [9]. In order to achive the implementation we need to combine

three modules of Aldebaran: ALMovementDetection, ALPeoplePerception and

ALEngamenZones.

61

APPENDIX A. APPENDIX A - PARAMETERS DETAILS

A.5.1 ALMovementDetection

This module is designed to help detect movement. This is achieved by obtaining the

needed data from the 3D sensor in the robot. Frames are collected at a regular interval

and each new frame is compared with the previous one. The pixels for which the difference

is above a threshold are identified as moving pixels. Then all the moving pixels are

clustered using both their physical proximity and their value difference [4]. Each time a

movement is detected the memory is updated and an event is raised.

The main disadvantage of the module is that it does not update the memory is the

robot is moving. Thus, it only detects movement if it is in steady position.

A.5.2 ALPeoplePerception

This module works as an extractor keeping track of the people around the robot. It

gathers the visual information from RGB cameras and a 3D sensor if available. The

algorithm raises a flag when it detects a new human and updates the memory. The robot

keeps two lists: visible humans and not visible humans. When somebody gets out of the

robots camera field of view, he/she is not immediately removed from the people list, as

this disappearance may be temporary and the result of the robot movements [5]. Which

takes us to the main limitation of this module which is the low precision in the pose

estimation of the human. Additionally, it does not work properly on high light conditions

or if another human is standing too close to the previous recognized one.

A.5.3 ALEngagementZones

Once we have recognized the human we need to approach him/her in a safe way. Which is

why we use ALEngagementZones. This module allows to classify detected people and/or

movements using their position in space with respect to the robot [2]. This module divides

the space in front of the robot into configurable zones. Thus, making it easy to adapt the

behavior of the robot depending on the zone a person or a movement is detected in [2].

62

BIBLIOGRAPHY

[1] Aldebaran aldebaran – pepper robot specifications. http://doc.aldebaran.com/

2-0/family/juliette_technical/. Accessed: 2017-05-05.

[2] Aldebaran alengagementzones. http://doc.aldebaran.com/2-4/naoqi/

peopleperception/alengagementzones.html. Accessed: 2017-04-13.

[3] Aldebaran cartesian control. http://www.bx.psu.edu/~thanh/naoqi/naoqi/

motion/control-cartesian.html. Accessed: 2017-02-03.

[4] Aldebaran movement detection. http://doc.aldebaran.com/2-4/naoqi/vision/

almovementdetection.html#almovementdetection. Accessed: 2017-04-13.

[5] Aldebaran people pereception. http://doc.aldebaran.com/2-4/naoqi/

peopleperception/alpeopleperception.html. Accessed: 2017-04-13.

[6] Inria peppercontrol. https://github.com/lagadic/pepper_control. Accessed:

2017-02-03.

[7] Inria visp. https://visp.inria.fr/. Accessed: 2017-02-03.

[8] INRIA visp edge tracking. http://visp-doc.inria.fr/manual/visp-2.6.

0-tracking-overview. Accessed: 2017-02-03.

[9] Inria visp naoqi bridge. http://jokla.me/software/visp_naoqi/. Accessed:

2017-02-01.

[10] INRIA whycon tracking. https://github.com/lagadic/pepper_hand_pose. Ac-

cessed: 2017-02-03.

[11] Irse whycon. https://github.com/lrse/whycon. Accessed: 2017-02-02.

[12] Laas metapod. https://github.com/laas/metapod. Accessed: 2017-02-03.

[13] OpenCV opencv team. http://opencv.org/. Accessed: 2017-02-02.

63

http://doc.aldebaran.com/2-0/family/juliette_technical/
http://doc.aldebaran.com/2-0/family/juliette_technical/
http://doc.aldebaran.com/2-4/naoqi/peopleperception/alengagementzones.html
http://doc.aldebaran.com/2-4/naoqi/peopleperception/alengagementzones.html
http://www.bx.psu.edu/~thanh/naoqi/naoqi/motion/control-cartesian.html
http://www.bx.psu.edu/~thanh/naoqi/naoqi/motion/control-cartesian.html
http://doc.aldebaran.com/2-4/naoqi/vision/almovementdetection.html#almovementdetection
http://doc.aldebaran.com/2-4/naoqi/vision/almovementdetection.html#almovementdetection
http://doc.aldebaran.com/2-4/naoqi/peopleperception/alpeopleperception.html
http://doc.aldebaran.com/2-4/naoqi/peopleperception/alpeopleperception.html
https://github.com/lagadic/pepper_control
https://visp.inria.fr/
http://visp-doc.inria.fr/manual/visp-2.6.0-tracking-overview
http://visp-doc.inria.fr/manual/visp-2.6.0-tracking-overview
http://jokla.me/software/visp_naoqi/
https://github.com/lagadic/pepper_hand_pose
https://github.com/lrse/whycon
https://github.com/laas/metapod
http://opencv.org/

BIBLIOGRAPHY

[14] ROS naoqi driver. http://wiki.ros.org/naoqi_driver. Accessed: 2017-02-03.

[15] ROS ros.org. http://wiki.ros.org/. Accessed: 2017-02-02.

[16] ROS vision visp. https://github.com/lagadic/vision_visp. Accessed: 2017-02-

03.

[17] P. ALLEN, B. YOSHIMI, A. TIMCENKO, AND P. MICHELMAN, Hand-eye coordination
for grasping moving objects, 2005.

[18] L. BELUSSI AND N. S. T. HIRATA, Fast qr code detection in arbitrarily acquired
images, in SIBGRAPI, 2011.

[19] K. BENAMEUR AND P. R. BÉLANGER, Grasping of a moving object with a robotic
hand-eye system, in IROS, 1993.

[20] F. CHAUMETTE, Handbook of robotics chapter 24: Visual servoing and visual track-
ing, 2007.

[21] F. CHAUMETTE, E. MARCHAND, F. SPINDLER, R. TALLONNEAU, AND A. YOL, Visp
2.6.2: Visual servoing platform, 2011.

[22] F. CHAUMETTE, P. RIVES, AND B. ESPIAU, The task function approach applied
to vision-based control, in Fifth International Conference on Advanced Robotics

’Robots in Unstructured Environments, 1991.

[23] F. C. CHAUMETTE, Springer-verlag copyright notice potential problems of stability
and convergence in image-based and position-based visual servoing, 1998.

[24] G. CLAUDIO, F. SPINDLER, AND F. CHAUMETTE, Vision-based manipulation with
the humanoid robot romeo, in Humanoids, 2016.

[25] A. I. COMPORT, É. MARCHAND, M. PRESSIGOUT, AND F. CHAUMETTE, Real-time
markerless tracking for augmented reality: the virtual visual servoing framework,

IEEE Trans. Vis. Comput. Graph., 12 (2006), pp. 615–628.

[26] D. DEMENTHON AND L. S. DAVIS, Model-based object pose in 25 lines of code,

International Journal of Computer Vision, 15 (1992), pp. 123–141.

[27] B. ESPIAU, F. CHAUMETTE, AND P. RIVES, A new approach to visual servoing in
robotics, in Geometric Reasoning for Perception and Action, 1991.

64

http://wiki.ros.org/naoqi_driver
http://wiki.ros.org/
https://github.com/lagadic/vision_visp

BIBLIOGRAPHY

[28] R. FEATHERSTONE AND D. E. ORIN, Robot dynamics: Equations and algorithms,

in ICRA, 2000.

[29] R. HORAUD, F. DORNAIKA, AND B. ESPIAU, Visually guided object grasping, IEEE

Trans. Robotics and Automation, 14 (1998), pp. 525–532.

[30] D. KRAFT, R. DETRY, N. PUGEAULT, E. BASESKI, J. H. PIATER, AND N. KRUGER,

Learning objects and grasp affordances through autonomous exploration, in ICVS,

2009.

[31] T. KRAJNÍK, M. A. NITSCHE, J. FAIGL, P. VANEK, M. SASKA, L. PREUCIL,

T. DUCKETT, AND M. MEJAIL, A practical multirobot localization system, Journal

of Intelligent and Robotic Systems, 76 (2014), pp. 539–562.

[32] B. D. LUCAS AND T. KANADE, An iterative image registration technique with an
application to stereo vision, in IJCAI, 1981.

[33] Z. MACURA, A. CANGELOSI, R. ELLIS, D. BUGMANN, M. H. FISCHER, AND A. MY-

ACHYKOV, A cognitive robotic model of grasping, 2009.

[34] E. MALIS, F. C. CHAUMETTE, AND S. BOUDET, 2 1/2 d visual servoing, 1999.

[35] M. MAREY AND F. CHAUMETTE, A new large projection operator for the redundancy
framework, 2010 IEEE International Conference on Robotics and Automation,

(2010), pp. 3727–3732.

[36] D. MARR AND E. HILDRETH, Theory of edge detection., Proceedings of the Royal

Society of London. Series B, Biological sciences, 207 1167 (1980), pp. 187–217.

[37] L. MONTESANO, M. LOPES, A. BERNARDINO, AND J. SANTOS-VICTOR, Learning
object affordances: From sensory–motor coordination to imitation, IEEE Trans.

Robotics, 24 (2008), pp. 15–26.

[38] A. MORALES, E. CHINELLATO, A. H. FAGG, AND A. P. D. POBIL, An active learning
approach for assessing robot grasp reliability, in 2004 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566),

2004.

[39] A. A. MOUGHLBAY, E. CERVERA, AND P. MARTINET, Error regulation strategies for
model based visual servoing tasks: Application to autonomous object grasping with

65

BIBLIOGRAPHY

nao robot, 2012 12th International Conference on Control Automation Robotics and

Vision (ICARCV), (2012), pp. 1311–1316.

[40] M. NITSCHE, T. KRAJNIK, P. VCIZEK, M. MEJAIL, AND T. DUCKETT, Whycon: An
efficent, marker-based localization system, 2015.

[41] G. TAYLOR AND L. KLEEMAN, Grasping unknown objects with a humanoid robot,
2002.

[42] C. TOMASI AND T. KANADE, Shape and motion from image streams: a factorization
method|part 3 detection and tracking of point features, 1991.

[43] N. VAHRENKAMP, S. WIELAND, P. AZAD, D. I. GONZALEZ-AGUIRRE, T. ASFOUR,

AND R. DILLMANN, Visual servoing for humanoid grasping and manipulation tasks,

in Humanoids, 2008.

66

	List of Tables
	List of Figures
	Introduction
	Problem Statement and Solution
	Project Management
	Contributions and Outline

	State of the Art
	Control Techniques
	Image Based Visual Servoing – IBVS
	Pose Based Visual Servoing – PBVS
	Hybrid Visual Servoing – HVS

	Configurations for Robot End Effector
	Related Work

	System Architecture
	PBVS for Pepper
	Software

	Tracking the Robot's Manipulator
	Pose Estimation using WhyCon Libraries
	Comparison of Methods

	Tracking the Object to Grasp
	Extract the Features of the Object
	Kanade-Lucas-Tomasi (KLT) Feature Extraction
	Edge Tracker

	Getting the Pose with Respect to the Camera
	Testing the Method

	Controlling the Joints in Velocity
	Pepper Velocity Control

	Results for PBVS on Pepper
	PBVS with 5-DOF
	PBVS with 6-DOF

	Conclusions
	Discussion
	Disadvantages of the Implemented Method
	Comparison with Other Approaches

	Future Work

	Appendix A - Parameters Details
	Camera Calibration Parameters
	Matrices Details
	Homogeneous matrix eMh
	Homogeneous matrix dhMoffset
	Homogeneous matrix cMdbox

	Pseudo Algorithms
	Fast Flood-Fill Algorithm

	KLT and Edge Tracker Parameters
	Pepper Follow People
	ALMovementDetection
	ALPeoplePerception
	ALEngagementZones

	Bibliography

