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Abstract— Humanoid robots are playing increasingly impor-
tant roles in real life tasks especially when it comes to indoor
applications. Tasks such as indoor environment mapping, self-
localization and object recognition help on making a robot
system more autonomous, hence more human like. The well-
known Aldebaran service robot Pepper is a suitable candidate
for achieving these goals. In this paper, a hybrid system
combining the object recognition with simultaneous localization
and mapping (SLAM) is proposed for Pepper robot for the first
time. The object recognition technique is based on SIFT and
RANSAC which together prove to be a robust and efficient
real-time technique for the system. The recognition is then
integrated with a modified version of ORB SLAM 2 allowing
Pepper to explore, map and recognize objects efficiently in an
indoor environment. Due to the practical application of our
system, it can easily be improved by applying path planning
algorithms or object grasping techniques among others.

Index Terms— Robotics, object recognition, SLAM, Pepper
robot, ROS.

I. INTRODUCTION

THE technological advance in the past decades signif-
icantly improved the quality of people’s daily life.

On an attempt of making humans lives easier and more
independent, a great step has been made in the robotics and
computer vision field – the development of humanoid robots.

In comparison with the rest of humanoid robots in the
market, Pepper, developed by Aldebaran and Softbank, is
affordable and has an open platform that allows developers to
enhance its capabilities and implement applications to make
the robot useful for every day task.

A. Problem Statement & Objective

The development of humanoid robots is still a relative new
technological field, therefore a number of research is still
being done in the subject. In order to achieve a higher level
of interest and fresh ideas in the area many competitions are
organized around the world. The European Robotics League
(ERL) is an European-based common framework for robotics
competitions, being Service Robots (ERL Service Robots)
framework one of their focus. Thanks to the many advantages
that Pepper robot offers, it is one of the robots used in the
competition.

One of the purposes of the competition is to develop
technological applications that will help elderly people to live
longer independently at home [1]. Pepper comes with many
built in functions, some of them being learn home, object
recognition and go to goal. Even though these functions
prove to be useful they have many limitations if the robot

Source code of the project is available in the git repository:
https://github.com/PaolaArdon/Salt-Pepper

needs to be used for real life purposes. For example, the
built-in function learn-home requires the environment to be
less than 2m2. In order to cope with the rules of the ERL
Service Robots competition and overcome the limitations
of Pepper we set a main objective: to develop a hybrid
system for Pepper that integrates the object recognition into
Simultaneous Localization and Mapping (SLAM).

Another limitation that makes the project more challenging
is poor sensors that comes with Pepper robot. Since both,
visual SLAM and object recognition use optical cameras we
are giving some characteristics of the used sensors [1]:

• RGB camera: located on the forehead and has a reso-
lution of 320× 240 at 5 frames per second (fps).

• Depth camera: Pepper has a depth camera located
behind its eyes with a resolution of 320x240 at 5 fps.

B. Contributions & Outline

Currently many applications have been developed on the
robot family of Aldebaran and Softbank. However, to the
authors acknowledge, visual SLAM and its combination
with a robust object recognition algorithm have never
been done on Pepper robot before. Our main contributions
are as follows:

1) For the first time, a visual-SLAM algorithm is success-
fully applied in the Pepper robot so it is no longer just
limited to a small environment.

2) Proposed an accurate and robust object recognition
algorithm for Pepper.

3) Built a hybrid system which integrates a robust object
recognition into the modified ORB SLAM. The recog-
nized objects are marked in the map and the map can
be saved and reused.

The paper’s structure is as follows: Section II discusses
many state-of-the-art object recognition and SLAM method.
Section III introduces how the project was organized. The
theory of our object recognition method and Simultaneous
Localization and Mapping (SLAM) with Pepper robot are
shown in Sections IV and V respectively. Then, the integra-
tion of the two functionalities into one system is described
in Section VI, which is followed by the results (Section VII)
and final remarks as well as future works in Section VIII.

II. STATE OF THE ART

Before going into details about the used algorithms for
the implementation it is useful to review some of the
general concepts in the field. Object recognition and SLAM
algorithms have been active research fields over the last 20
years. Some of the related work is reviewed in this section.
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A. Object Recognition

Object recognition relates to the problem of identifying an
object in an image. In general, the algorithms can be divided
in two main streams: appearance-based methods and feature-
based methods.

An appearance-based recognition method is based on
directly using example images (or templates) to perform
recognition tasks. One of the methods in this branch is based
on edge and frame extraction described by Sung et. al in
[2]. These are then matched with templates in a database
using sliding windows and the ones with high similarity are
considered to be the recognized object.

Another type of appearance-based methods is focused
on the histogram. Swain & Ballard in [3] initially showed
how the object recognition can be performed by comparing
the RGB color histogram. Schiele & Crowley [4] applied
histograms of receptive fields proposed by Koenderink &
van Doorn [5] and the recognition result is enhanced with the
usage of the Gaussian derivative or the Laplacian operator
at multiple scales. Linde & Lindeberg [6] generalized the
idea of the receptive field histogram to higher dimensionality,
which significantly improves the recognition performance.
In the paper of Schneiderman & Kanade [7], histograms of
wavelet coefficients are proved to be an useful tool for the
recognition of cars and faces.

Appearance-based methods are usually robust to a certain
type of object characteristics, depending on which informa-
tion is extracted for the comparison between the templates
and the objective image. However, it turns out most of them
are sensitive to many variations and are computationally
expensive. On the other hand, feature-based recognition
methods offer a solution to most of the previous mentioned
problems which makes them a popular choice.

The objective of feature-based recognition algorithms is
to find feasible matches between the features extracted from
the database images and from the target image. Some of the
commonly used features in object recognition are:

Shape Context: a descriptor proposed by Belongie et
al. [8] to measure the similarity between two shapes to be
used for object recognition. The shape context is obtained
for each pixel and for the one at a reference pixel, which
captures the distribution of all the remaining points within
the same shape. Even though in theory the method has proven
to work well for objects with distinguishable shapes, this is
not always the case in real world applications.

Haar-Like feature: Haar-Like features are used in Haar
cascade algorithm, which used for many applications like
face recognition; locate pedestrians, objects or facial expres-
sions in an image. This type of feature is defined within
a small window, and sums up the difference of the pixel
values in the adjacent rectangular regions In general, for
Haar cascade the system is provided with several training
images that give the needed features to be used later in a
classifier [9]. The disadvantages of this technique are mainly
the long training time and lack of robustness, which will be
further compared in Section VII.

SIFT: SIFT is a tool to detect the keypoints of an
image using Difference of Gaussians (DoG), describing them
through the histogram of weighted orientations. SIFT is
invariant to many factors, such as rotations and scales, among
others. More details will be discussed in Section IV-A.

SURF: The Speed Up Robust Feature (SURF) algo-
rithm is a scale and rotation invariant point detector and
descriptor [10]. SURF uses an approximated DoG and the
integral of the image. After an image is converted into
an integral image, we can compute the block subtraction
between any two blocks with just six calculations. Therefore,
computing SURF is theoretically three times faster than
computing SIFT. However, the SURF descriptor is based on
the distribution of first order Haar wavelet responses. From
our experiment during the usage of Haar the performance of
the descriptor is not as outstanding as the one of SIFT.

ORB: It is subject to the FAST keypoint detector and the
visual descriptor BRIEF. More details about ORB can be
found in Section V-A.

BRISK: Binary Robust Invariant Scalable Keypoints
(BRISK) also consists of the detection and descriptor
part [11]. For the detection, a scale space is created and the
scored used in FAST detector is computed across the space.
Then, the pixel level non-maximal suppression is performed.
To describe the detected keypoints, the weighted Gaussian
average over a select pattern of points near the keypoints are
calculated [12]. The Hamming distance instead of Euclidean
is used to match the keypoints, which helps to speed up the
process.

The comparisons of the recognition performance using
various features will be detailed in the result & discussion
part (Section VII).

B. Simultaneous Localization and Mapping (SLAM)

In this section we are going to review of some of the state
of the art algorithms for SLAM that we have considered in
our project.

Extended Kalman Filter SLAM (EKF-SLAM): In EKF-
SLAM the map is represented with a large vector stacking
sensors and landmarks states which is modelled by a Gaus-
sian variable [13]. Maximum likelihood algorithm is used for
data association.

Some of the advantages of EKF-SLAM is that is relatively
easy to implement and is efficient when working with small
number of features and distinct landmarks. On the other
hand, the complexity is quadratic with respect to the number
of features, it does not guarantee convergence in non-linear
and/or non-gaussian cases, and does not correct erroneous
data association [13].

Collaborative Visual SLAM (CoSLAM): This algo-
rithm [14] interacts in dynamic environments where live
frames come from multiple cameras that can be independent
and are mounted on different points of view. As an overview,
these cameras build a single global map, including the
static background points and the foreground dynamic points.
This set of points are the ones used to estimate the poses
of all cameras, which views should overlap. CoSLAM is
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considered as one of the most efficient approaches which is
able to get rid of false points caused by incorrect matching.

Large Scale Direct Monocular SLAM (LSD-SLAM): It
has been developed to allow the building of large scale map
environments [15]. In this SLAM version instead of using
keypoints it uses the image intensities to track and map. The
method shows the advantage of allowing the mapping of
large areas without extra computational power.

Oriented FAST and Rotated BRIEF SLAM (ORB-
SLAM): It is a keyframe and ORB based SLAM algo-
rithm [16]. One of its greatest advantages is that it operates
in real-time and large environments, being also able to
close loops and relocalize from different viewpoints. Due
to these great contributions it is the chosen algorithm for the
project implementation. More details about it are described
in section V

III. PROJECT MANAGEMENT

In order to accomplish the objectives we set a schedule for
the project which we closely followed. We were given a total
of nine weeks to accomplish the goals for the project.The
detailed calendar is shown in the table.

Scheduling of the Project

Task name Start End Total days
Algorithms review Sep 26 Oct 03 7
Check point #1 Oct 10 Oct 10 1
Visual SLAM Oct 03 Oct 23 20
Object recognition Oct 11 Nov 01 20
Check point #2 Nov 01 Nov 01 1
System Integration Nov 04 Dec 04 28
Final Presentation Nov 22 Nov 22 1
Final Demonstration Dec 01 Dec 01 1
Report Dec 12 Dec 17 5

As seen on the previous schedule, most of the project’s
time was spent on building the hybrid system which in-
tegrated the object recognition with SLAM. Furthermore,
working with hardware can bring additional difficulties on
the side.

One of the project management challenges is to overcome
delays and still being able to deliver the expected outcome.
Our case was not the exception, we had many delays on the
way, such as: the 3-week late arrival of the Pepper robot, the
allocation of a working space (lab allocation), and network
problems among others. Despite of the faced difficulties, the
system integration was successfully carried out.

IV. PROPOSED OBJECT RECOGNITION

As previously explained, We want to make Pepper more
human like and helpful in the household. One of our main
objectives is to allow Pepper to recognize objects. Some of
the classical object recognition algorithms show not to be
efficient for some applications. For instance, Haar Cascades
[9] requires a trade off to be done between the efficiency in
learning/training time and the output’s accuracy.

Based on Lowe’s paper [17], we proposed a robust SIFT-
based recognition algorithm for Pepper robot. Our method is
not only able to get rid of the long training time, but is also
robust to rotation, scaling, perspective transformation among
others. The robustness of this algorithm allows Pepper to
recognize objects efficiently.

The flow chart of the proposed algorithm for Pepper is
presented in Fig. 1. The method’s main steps are:

• Feature extraction
• Feature matching
• Decision making

Fig. 1. Workflow of our proposed object recognition algorithm

A. Feature extraction

The very first step is to extract a feature from a given
image database. This is done every time a new frame arrives.
And every time when a new frame arrives, the first step is
also to extract the features. Under the uniform recognition
framework, we tested several feature extraction techniques
including ORB, SURF and SIFT.

When applying ORB and SURF the accuracy detection of
the output is acceptable. However, SIFT offers the highest
accuracy of them all out of our testing rounds as we can see
in Section VII, so we decided to choose SIFT as our primal
feature extraction method.

However, we still keep both SURF and ORB as user
options in the implementation. Although we will only discuss
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SIFT for the rest of the paper, users can still easily change
the feature to others from our code.

The SIFT process consists of two parts: keypoint detection
and description. In the detection section, a scale space is
constructed, based on which the Laplacian of Gaussians
(LoG) is acquired to extract the keypoints. After a few post
processing steps like eliminating the keypoints with low
contrast, the keypoints are localized and the corresponding
orientations are assigned.

For the descriptor part, the histogram of weighted orienta-
tions around the keypoint area is obtained, which represents
the important information of the current keypoint. It has
been shown that the resulting descriptor is invariant to the
following: scale, rotation, additive illumination, perspective
transformation and noise. This invariance is what allows
SIFT to be a powerful descriptor and play an essential role
in our task.

B. Feature matching

Once the SIFT features of the images in the database and
the current frame have been extracted, we need to know how
many features are a match between the current frame and
every image in the database. This will help the following
decision-making step described in the next section.

At first, we applied a brute-force matching scheme but
soon replaced with a KD-tree based matching method which
significantly speeded up the matching process.

Brute-Force matching: The easiest yet inefficient ap-
proach to feature matching is brute-force nearest neighbour
matching (Alg. 1). The concept is as follows: first, compare
each feature fi in the current frame with all the features
g of one certain database image, and find the one gmin

with the shortest distance. Second, as a double check, the
distances between gmin and all features f in the current
frame are calculated and then the ft with the shortest distance
is chosen. If the ft is exactly the fi, we find one good match,
otherwise we go to fi+1 and repeat the same process until
all the features have been traversed.

Such a matching process for one single database image is
described in Alg. 1. Then, the process should be applied for
each object image in the database in order to find the right
matches.

Algorithm 1 Brute-Force matching algorithm
Input: F = [f1, ..., fn] features of the current frame, G =
[g1, ..., gm] features of one database image
for i = 1, ..., n do
fi finds the feature gmin in G with shortest distance
gmin finds the feature ft with shortest distance
if i = t then

Add i to the best match index
end if

end for
Output: Indexes of the best matching features

Certainly, this matching method is quite computationally
expensive. When the number of objects in the database is

large, the calculation time will be increased drastically. In our
experiment, when there are only three objects in the database,
the computational time goes to more than 300 milliseconds
to run the recognition for one frame.

If we remember from Section I the frame rate of the
RGB 2D camera of Pepper is 5 fps, which means the frame
is updated every 200 milliseconds. From the experiments,
the longer we ran the recognition code with the brute-force
matching, the more the frame updating time was delayed. In
the testing rounds, for example: after running the recognition
for some time, we moved an object into Pepper’s camera field
of view and the object appeared on the screen more than 20
seconds later.

Kd-Tree matching: Due to the inefficiency in the previous
presented method we decided to use the matching method
proposed by Beis et al. [18], which is a kd-tree built for the
rapid traversing of each feature in the current frame. The
main idea is as follows[19]:

1) Build a KD-tree for the features extracted from the
database images by bisecting search space on the
dimension with the greatest variance.

2) A feature fi in the current frame traverses the con-
structed kd-tree and the corresponding distances be-
tween the feature and each branching point are saved
in a queue.

3) Back-trace from bottom to top and check if the cur-
rent leaf distance is less than all the distances from
the queue. If yes, the non-visited branches will be
traversed.

From our intensive experiments it has been shown that the
kd-tree nearest neighbour matching algorithm significantly
speeds up the recognition process (around three times faster
than the one shown with brute-force matching). Since the
recognition runtime for each frame is within the range of
the updating time (200 ms), the kd-tree matching enables
Pepper to real-time recognition.

C. Decision making

Once the good feature matches between the current frame
and all the objects in the database, the Random Sample
Consensus (RANSAC) [20] is applied. RANSAC decides
whether an object from the database exists in the current
frame or not and which object it is.

As seen in Alg. 2, we use RANSAC to fit a homography
transformation between the feature positions M

(i)
C in the

current frame and the object in the database M
(i)
D , and then

calculate the number of inliers N (i). If N (i) is larger than
a threshold (we set it to be 15) and also larger than the
previous number of inliers, we replace the object i as the
best candidate. This process is repeated until the number of
inliers of all database objects has been calculated. If the inlier
numbers are all smaller than the threshold, it is reasonable
to say there is no object in the current frame, otherwise, the
object with most inliers is considered as the detected object.
Finally, if an object is detected, through the homography
matrix that we have acquired from RANSAC, the bounding
box of the best object position is drawn on the frame.
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It is worth mentioning that when the threshold for the
number of inliers is set properly, the object can be found
despite of the obstructions between the object and the
camera, section VII shows the results of the method.

So far, we have seen the algorithm process for one frame,
once the process finishes it runs iteratively for each frame.

Algorithm 2 Decision making through RANSAC
Input: Matching indexes of the features in the current frame

M
(i)
C and one certain database image M

(i)
D , number of

database image n, minimum number of inliers Nmin,
bestInliers = 0, bestIndex = 0
for i = 1, ..., n do
N (i) = findHomography(M (i)

C , M (i)
D , RANSAC)

if N (i) > Nmin && N (i) > bestInliers then
bestInliers = N (i)

bestIndex = i
end if

end for
if bestIndex = 0 then

No object has been found in the current frame.
end if

Output: bestIndex (the index of the best matching object)

More implementation details about the Pepper object
recognition can be found in the /pepper_recog folder
of our Github repository.

V. SIMULTANEOUS LOCALIZATION AND
MAPPING

Nowadays Simultaneous Localization and Mapping
(SLAM) is one of the active research topics in Computer
Vision and Robotics community. Many SLAM algorithms
have been developed as we have discussed in the Section II.
All of these algorithms share a common purpose, however,
they use different approaches depending on the available
sensors. Some of them use laser, cameras or RGB-D cameras
(or a combination of different sensors). For instance, LSD
and ORB SLAM algorithms are based on RGB(-D) camera
and we can call them visual-SLAM.

The needed sensors of Pepper robot have been described
earlier, the ORB SLAM is the one that better copes with
the sensors capabilities, therefore being the implemented
algorithm on Pepper. In this section a brief introduction
for ORB features and ORB SLAM is given as well as its
extension ORB SLAM 2 [21] that uses RGB-D camera.

A. ORB feature

Since we are working with the visual SLAM, extracting
features from the input video stream is commonly the es-
sential step. Feature extraction is the base for ORB SLAM
algorithm that makes the robot understand the surround-
ing environment and localize itself, as well as closing the
trajectory loop. The Oriented FAST and Rotated BRIEF
feature [22], known as the ORB, is a state-of-the-art feature
that is applied to our SLAM algorithm.

ORB is built on the Features from Accelerated Segment
Test (FAST) detector [23] and Binary Robust Independent
Elementary Features (BRIEF) descriptor [24]. Original FAST
detector does not provide neither the keypoint orientation,
nor the measure of the cornerness, which makes ORB not
rotation invariant. Therefore, in the phase of keypoint detec-
tion of ORB, the intensity centroid [25] and the Harris corner
measure [26] are applied to remedy these disadvantages.
Similarly, although the BRIEF descriptor can be calculated
efficiently and robust to additive illumination change, per-
spective distortion, etc., the performance of BRIEF dimin-
ishes significantly for the rotation over a few degrees. To
solve the weakness of BRIEF, the best BRIEF pairs with
large variance and low correlation are learned from PASCAL
VOC 2006[27] and then the obtained BRIEF descriptors
from the keypoints of the current image are steered based
on the orientation of the keypoints.

ORB is made up of the modified version of FAST and
BRIEF that we mentioned before. It is rotational and scale
invariant as well as robust to noise, and it has been shown
that the performance of ORB in many real-life applications
is equivalent to or even slightly better than SIFT in some
cases. More importantly ORB is computationally inexpen-
sive. Compared with the costly SIFT, ORB is at two orders of
magnitude faster, which is suitable for our real-time SLAM
application.

B. ORB SLAM – Monocular

ORB SLAM mainly consists of three components that
run in parallel: tracking, local mapping and loop closing as
shown in Fig. 2 In the following sections, the main idea of
each component is detailed.

Fig. 2. Overview of ORB SLAM. Image courtesy of [16]

1) Tracking: This process starts with the initialization
of the map. In the monocular case the depth has to be
computed using several images of the same scene by moving
the camera in horizontal/vertical direction with respect to the
scene. The authors of the algorithm proposed a new method
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[16] for ”structure from motion” estimation that combines
two geometrical models for camera pose estimation:

• Assumes the scene is planar and computes the corre-
sponding homography matrix between two frames.

• Assumes the scene is non-planar and computes the
fundamental matrix.

Then the selection of the best model is computed using
a certain heuristics, and the camera pose will be estimated
based on the selected model.

Once the map has been initialized from several consecutive
frames of a scene from different viewpoints, the ORB
features (key-points) are extracted from consecutive frames.
It should be noted that the FAST corners are extracted
at 8-scale levels and the modified BRIEF descriptors are
computed on the keypoints orientation.

The camera pose is computed by searching the matches in
a small area around each ORB keypoint between the current
frame and the previous one. The search is optimized by as-
suming that the camera motion has a constant velocity model.
If there are not enough matches, the search is done on all
map points near the points from the last observed frame. In
case the track is lost, the current keypoints are converted into
bag-of-words features and traverse the predefined recognition
bag-of-words database. This is applied to obtain the best
matching keyframe. After that, the robot can be re-localized
again. Moreover, PnP algorithm[28] along with RANSAC
are applied to further refine the estimation of pose.

2) Local Mapping: From what we discussed in the last
section, a new keyframe is obtained. In order to put the new
map points, we need to find the positions of all the new points
on the world coordinate. Instead of triangulating points
only with the closest keyframes like PTAM, ORB-SLAM
triangulates points with several neighbouring keyframes. As
long as a pair of ORB features have been matched, they can
be triangulated.

Sometimes wrong map points may appear. To ensure all
the mapped points are the real ones, we should check if a
map point is remained in the map for a period of time. The
author of ORB-SLAM uses a method called pass culling test,
which basically means a keypoint can be put in the map only
after the following two conditions are satisfied: make sure
the keypoint can be found in at least 25% of frames, and the
keypoint should be seen in at least three keyframes.

Finally,the local bundle adjustment will optimize the cur-
rent keyframe. The final pose optimization is performed by
Levenburg-Marquart method.

3) Loop Closing: Loop closing is one of the most impor-
tant contributions of the ORB-SLAM and also one of the
reasons we chose it for Pepper’s SLAM task. Loop closing
means when the robot is moving around the environment and
then comes back to the starting point, the system should be
able to connect the latest movement with the initial ones. In
this case, the trajectory can be closed and the map will be
globally changed. With the loop closing, the built map and
the estimated robot trajectory are more accurate.

The main idea of loop closing can be summarized in three
steps: loop detection, similarity transformation computing

and loop fusion. First,a co-visibility consistency test is per-
formed to check if a loop has been found. Throughout the
whole process of the SLAM, we keep calculating the similar-
ity between the current keyframe and all its neighbors in the
co-visibility graph. The keyframe with the highest similarity
score will be used to update the reference loop-closing frame.
Second, if one keyframe satisfies the test in the first step, the
RANSAC will iteratively be applied to calculate a similarity
transformation containing: 3 translations, 3 rotations and 1
scaling parameters. When the candidate has enough number
of inliers, we are sure the loop has been found. Third, with
the similarity transformation matrix acquired from the last
step, the map points in the current keyframe is reformed to
the reference loop-closing keyframe. The map points from
all the neighbours of the current keyframe are also projected
through the same transform. Therefore, all the inliers from
the last step are fused.

The last step is to perform a global bundle adjustment.
The only difference from section V-B.2 is that optimizing
all the map points will be used for the bundle adjustment
and refined.

The illustrations of the loop closing can be found in the
Section VII.

C. ORB SLAM – RGB-D

As it has been mentioned, the first step of ORB SLAM is
the initialization of the map, which requires several images
of a scene from different viewpoints. However, this process
takes a long time for Pepper robot, because with a rate of 5
fps the sequence of images cannot provide smooth parallax
effect.

In order to overcome this problem, an extension for
Monocular ORB SLAM has been introduced in [21], where
the depth estimation has been replaced by the RGB-D
camera. In this case, the initialization process does not
involve recovering the camera pose from several images.
Instead, the first taken image by the camera can be directly
used to initialize the map because the depth information for
the keypoints is already there. Therefore, using an RGB-
D camera speeds up significantly the initialization process,
which is very important when using a camera with a low
frame rate as in Pepper robot.

VI. INTEGRATION & ARCHITECTURE

Our final objective was to combine the object recognition
with SLAM, i.e. while running SLAM we also want the robot
to identify the detected object’s position and put a marker
with label on the map.

In this section we are going to show how we accomplished
this task. Also, how the whole system is organized in order
to make the robot, ROS and the two previously described
algorithms work together. The additional features integrated
in the system will be introduced as well.

A. System overview

Pepper robot comes with many built-in functions and its
own operating system (OS) called NAOqi-OS. This is a
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Linux distribution based on Gentoo and it is installed in
Pepper’s computer which is integrated on the robot. However,
Pepper doesn’t allow to install third-party applications on
its OS and requires to use its own Software Develop-
ment Toolkit (SDK). In order to overcome this limitation,
the Robotic Operating System (ROS) has been used in
this project. ROS is a language and platform independent
framework that allows users to create packages in a graph-
based structure and provides a powerful tool for message
sending/receiving between processes [29].

ROS – NAOqi Driver and plugin for Pepper: In spite of
the fact that the manufacturers of Pepper limit the access to
the OS of Pepper, they provide a driver that can be used to
link NAOqi and ROS together. This driver fetches all sensor
data and creates ROS nodes and topics which publish the
states of all the robot sensors. Moreover, the driver creates
topics for controlling joints of the robot allowing other ROS
applications to subscribe and publish standard ROS messages
(e.g. Twist) to control the robot. The whole process of
NAOqi-ROS communication is illustrated in Fig. 3. As it
can be seen from this figure, the main role of the NAOqi
driver is converting NAOqi modules to ROS nodes.

Fig. 3. The diagram illustrating the way of communication of a ROS
application through NAOqi ROS driver.

In addition to the NAOqi driver, there must be robot
specific plugins that bring specific capabilities of the robot
to ROS depending on the characteristics of the robot. For
example, Pepper robot shares the same OS with the other
Aldebaran and Softbank robots. However, each of these
robots have different characteristics such as number of joints
and different types of sensors. In order to avail full robot
capabilities it is required to run a certain type of driver.
To achieve this, pepper bringup and pepper dcm bringup
plugins [30] have been used for Pepper robot. The main
difference between pepper bringup and pepper dcm bringup
is that the former does not block the autonomous life of the
robot whereas the latter turns that functionality off (which is
what we mainly use). Where the autonomous life is an out
of the box functionality that imitates human behaviour in the
robot (e.g. track human face, react to a sudden loud noise,
etc.).

B. Implementation

Now we introduce how SLAM and object recognition
are combined using ROS. First of all we have to mention
that the ORB SLAM 2 algorithm that we used has been
implemented in C++ programming language as a stand-
alone application, i.e. it can be used without ROS.For this

reason, it does not use RViz for showing the map, which is
a default and convenient visualization tool of ROS. Instead
of RViz it uses Pangolin [31], which is a lightweight library
for managing visualization and user interaction that wraps
OpenGL library [32] functions.

1) Combining SLAM with ROS: To use ORB SLAM 2
in ROS, a ROS node was implemented to instantiate ORB
SLAM 2 as an object. The created node subscribes to the
topics where RGB and depth images are being published.
Note that the ORB SLAM 2 with RGB-D expects the camera
to be RGB-D, but Pepper has RGB and depth cameras
separately. Accordingly, we made two separated subscribers
for both modalities. We also have to make sure that the
messages coming from these topics have the same timestamp,
because it is possible that some frames may be delayed or
lost due to unexpected technical issues. Furthermore we also
make sure that the images from both cameras are correctly
registered. The described architecture for SLAM & ROS is
illustrated in Fig. 6 (Block-A).

2) Combining object recognition with ROS: In contrast
to the ORB SLAM implementation, we implemented object
recognition module as a ROS Node, so the algorithm logic
(as illustrated in Fig. 1 is directly put inside the node.
Then, we obtain images from Pepper’s frontal camera and
convert ROS raw image format to OpenCV image using CV-
Bridge [33] package from ROS.

The object position with the respective camera coordinate
(depth estimation) is computed in this node as well. The
estimated depth information is published as a topic. For
publishing the object name and its position in camera frame
we created a custom ROS message that holds the following
fields: 1) flag (boolean type) – accepts true when an object
has been detected, false otherwise; 2) depth (float type)
– estimated distance from the camera frame origin to the
object; 3) name (string type) – name of the object that has
been detected.

3) Depth estimation: Provided an object is recognized in
the present frame, there are two following tasks that require
the knowledge of the depth distance between the Robot
and the recognized object. One is the object following and
avoiding. Based on the depth information, Pepper can decide
to move towards or backwards the object. The other task is
to mark the objects’ position on the 3D map while SLAM
is being performed. Due to the fact that the depth camera of
Pepper has severe distortions because of the lens covering out
of the depth camera, it is essential to find a way to estimate
an accurate depth distance without the depth camera.

A pinhole model is employed for estimating the depth
information.

From Fig. 4, we can easily get the depth from the pinhole
model:

d ≈ f × R

r
− f

where f is the focal length, R is the real size of the object and
r is the object size on the image plane. For the RGB camera
of Pepper, we found the pixel conversion to millimetre is 1
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Fig. 4. Illustration for the Pinhole camera model

pixel = 1 mm, so the converted size of the object on the
frame plane can be acquired.

At the beginning, we simply used the upper line of the
object for r and R. However, it has been shown that this
is incorrect if the affine or even the perspective transfor-
mation is involved, which is very common in the real object
recognition task. To solve the problem, we set r and R to the
perimeters (sum of the length of each side) of the recognized
object in the image plane and the real case separately.

As we know from the plane geometry, the cyclic quadrilat-
erals with the same radius have the same perimeter. Hence,
no matter how your object is moving, the perimeter of the
object in the frame is always the same as long as it is
moving with a fixed centre point (u0, v0). Fig. 5 illustrates
the theorem with an underwater image. As we can see, no
matter how the image is deformed inside the circle, the
perimeter is preserved.

(a) Orthogonal view (b) Perspective View

Fig. 5. Illustrations for the geometry fact that the perimeter is kept the
same after applying perspective transformation

4) Marking objects on the map with Homography:
As we mentioned earlier, when the object is detected the
object recognition node publishes a custom message with
a flag field set to true. In order to put a marker with the
name of the detected object, we created a subscriber to the
custom message in the SLAM node (Fig. 6 (Block-B)). Since
the map visualization is independent from ROS, we cannot
directly put markers on the map inside the SLAM Node.
Therefore, we created a C++ class (we will refer to this class

as Recognition.class further) that represents the recognized
objects in ORB SLAM 2 package. This class is also included
in the ROS Node. When SLAM ROS Node receives a
message notifying that an object has been detected, we create
an instance of the Recognition.class with the parameters that
came with the message. In order to process these kind of
instances we modified the source code of ORB SLAM 2
to process Recognition.class objects along with the RGB
and depth images. Mostly, the modification took place in
the tracking process, which we have discussed in Section V.
We also had to add a functionality for Pangolin visualization
module to plot the positions and names of the objects.

Until now, we only know the positions of the objects w.r.t.
the camera. Before plotting the object on the map we have
to find its position in the world frame. In order to do so,
we obtained the pose (rotation + translation) of the camera
when the object was being detected, which is described as
the transformation matrix. Then, the position of the object is
computed using the following equation:

r1,1 r1,2 r1,3 tx
r2,1 r2,2 r2,3 ty
r3,1 r3,2 r3,3 tz
0 0 0 1


︸ ︷︷ ︸

Tc

×


0
0
De

1


︸ ︷︷ ︸
pobject

=


r1,3 ×De + tx
r2,3 ×De + ty
r3,3 ×De + tz

1


︸ ︷︷ ︸

pworld

where Tc - is the camera transformation matrix that shows
how it is rotated and translated from the origin of the world
frame; pobject and pworld - are object position in camera and
world frames respectively; De - is the estimated depth. Then
we update the corresponding object coordinates with the new
computed world frame coordinates.

Now, by using the homography matrix, the 3D position
of the object with respect to the world coordinate has been
found. AS a result, we can directly put the marker with the
name on that position in the map.

Fig. 6. System architecture.
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C. Additional features
In this section we are going to talk about the additional

features that are essential for performing SLAM and making
the whole system faster and more practical.

1) Robot control with a joystick: The first thing that has
to be mentioned is the robot control. This is the main module
that is used for moving the robot in an indoor environment
for building the map. This task is executed with the help of
a joystick. The usage of a joystick ensures full control of
the robot for SLAM. Additionally, by controlling the robot
manually we can assure that all the necessary areas of the
environment are covered and put in the map.

ROS provides a generic teleoperation tools [34], which
is a simple library that reads commands from a joystick
and publishes a vector with buttons state. In order to make
it work with our robot we created a controller ROS node,
that subscribes to the joystick node. Then, depending on the
pressed button we define linear and angular velocities for
the robot and send them to the /pepper robot/cmd vel topic.
By sending velocity commands to that topic we can control
the robot base. However it is worth mentioning this does not
allow to control other joints of the robot.

For controlling the robot head we used NAOqi SDK
directly inside our Robot Control node. First, we retrieve
the current position of the head when a button, which was
mapped to head movements, is pressed. Then, depending
on the movement direction we calculate the final position
of the head (in degrees). Next, using the ALMotion NAOqi
module we send a command to the robot. Additionally, we
programmed two more buttons that send the robot to Rest
and Active status, which is implemented using NAOqi SDK
as well.

The general overview of the robot controlling component
of the system is illustrated in the Fig. 6 (Block-C).

The implementation details can be found in
/joy_pepper/scripts/joypepper.py

2) Map saving & loading: Once the map of the environ-
ment has been built it is important to be able to reuse it.
Saving the map becomes an important task due to the short
working period of Pepper joints (they overheat after 2 hours).
The implementation of the ORB SLAM 2 does not provide
a functionality that allows to save the built map and load
an existing map. In order to fill this gap and allow Pepper
to continue the map building process, we have included this
feature to our system.

First, a very naive method has been implemented where we
save all the keypoints, keyframes and corresponding bag of
words for each keyframe of the map into a text file. To reuse
it we load this text file and parse it. This method appears to
be very slow and inefficient, as expected, due to the large
file size. Moreover, the processes of writing/reading from a
text file are known to be slow.

Another way of solving this problem was saving all the
instances of the C++ objects into a binary file, which is
a well known strategy in programming called serialization.
For ORB SLAM 2 there were already some research going
on about this [35], where serialization and deserialization

have been used for saving and loading the map. However,
this has been implemented only for Monocular SLAM, and
we implemented it in a similar manner for SLAM with
RGB-D camera. More details can be found in the codes
Map.cc KeyFrame.cc MapPoint.cc in our Github
folder /orb_slam2/src

3) Fast vocabulary loading: For loop closing and camera
relocalization the authors of ORB SLAM 2 used bag of
words place recognition model [36]. This model uses a
vocabulary of visual words, which have been built using
a huge database of images. Every time when ORB SLAM
2 is launched it takes some time loading the vocabulary,
because the vocabulary is saved as a text file which contains
more than a million lines. This issue makes the start-up
process very slow, and therefore the serialization for the
vocabulary has been implemented in a similar manner as
in the map serialization [35]. The source code can be found
/tools/bin_vocabulary.cc

4) Object following / avoiding: We also implemented
object following and avoiding functionality for Pepper. The
main idea of this feature is to allow the robot to continuously
track an object but also avoid it by keeping a certain distance
when the object is too close.

The application works in the following manner: if the
estimated depth distance from Pepper to the detected object
is larger than 60 cm, then Pepper follows the object at a
predefined constant speed. On the contrary, if the distance is
calculated to be smaller than 20 cm Pepper avoids it by going
backwards. Moreover, we also want the detected object to be
at the center of the frame. In order to do so, we computed
the displacement of the central point of the object from the
frame center. Then, depending on this displacement we send
an angular velocity command to the robot to minimize this
difference.

VII. RESULTS & DISCUSSIONS

In this section we discuss the object recognition, SLAM
and the integration. We will discuss what we have accom-
plished as well as the comparisons with other object recogni-
tion and SLAM algorithms. For the real demonstration please
check the link https://youtu.be/evFsnWH_bpY.

A. Object recognition

First of all, since we are using feature-based object
recognition framework, the comparison of the recognition
performance with various features should be discussed.

As we can see in Fig. 7, we choose and compare the
performance of ORB, SURF and SIFT under our proposed
recognition framework. In Fig. 7(a), SIFT takes longer time
than the other two, but is under the acceptable updating
time frame (200 ms). Nonetheless, when comparing the
recognition accuracy (Fig. 7(a)), it can be clearly noted that
the SIFT-based recognition achieves around 95%. Clearly, for
our purposes, accuracy is more important than computational
time. Hence, SIFT is chosen as our primal features extraction
method for the object recognition task.
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Fig. 7. Comparison of the recognition performance with ORB, SURF and
SIFT. The implementation language is Python and 3 various objects (book,
folder, T-shirt) are put in the database.

In Table 1, we compare our proposed SIFT + NN
+ RANSAC method with the well-known Haar Cascade
method [9]. As we can notice, our method outperforms the
Haar Cascades almost in all the cases.

Haar Cascades method requires a long time to train one
object, while our method does not require training and
needs only one image per object. This makes the system
more flexible and easy to use by allowing users to modify
the database just by adding/removing images of objects in
one folder. By using the proposed method, no learning and
training times would be required. The performance of our
method also appears to be much more consistent than the
other method and barely has false alarms.

Table 1: Comparison of Haar Cascade and our
proposed method (SIFT + NN + RANSAC)

Haar Cascades Proposed

Training time 7 3

Detection consistence 7 3

False alarm 7 3

Rotation Invariant 7 3

Detect with partial info 7 3

A large number of objects 3 7

From the extensive experiments, when recognizing the
same still object, we found out that the recognition accuracy
of our method is almost 100%. In contrast, the accuracy
of Haar Cascades is less than 60%, and false alarm and
mis-detection may happen even in between two consecu-
tive frames. Indeed, for Haar cascades the more negative
/ positive samples we use for training, the better recognition
rate we obtain. However, the training time will also increase
dramatically.

An important improvement of our method is enabling
the object rotation-invariance. It turns out that the Haar-like
feature does not evidently have the capacity of dealing with
rotated object, unless a huge amount of samples with various
angles have been used for training. Even though the training
dataset is huge, we are not guaranteed with a decent result.
SIFT instead is mainly famed for the rotation-invariance
property. Fig. 8 undoubtedly shows that our method can cope
with all kinds of rotational movements.

It is worth mentioning that our proposed method can still

Fig. 8. Illustrations for the rotation invariant of our object recognition

recognize the objects properly with only partial details of
an object. As we can notice from Fig 9, our method can
still recognize correctly when around 30% of the folder has
been covered. As we can remember in the Section IV, this
improvement is due to the proper threshold that we set for
the number of inliers. As long as the inliers number acquired
from RANSAC is larger than 15, we say an object has been
detected. For Haar Cascades, the object is not able to be
recognized at all even if the covered portion is really small.

Fig. 9. Illustration that our object recognition can work with partial
information

Finally, the main problem of our proposed method is that
the recognition will be much slower when the number of
the objects inside the database increases. For future work, to
improve this part, the Bag-of-Words + SVM training scheme
can be included. However, with regard to a home service
robot which always stays indoors, it is already sufficient for
Pepper to recognize a limited number of object.

B. SLAM with Object recognition

The experiments have showed that the ORB SLAM 2
outperforms its predecessor and LSD-SLAM in terms of
initialization and depth estimation accuracy. LSD-SLAM
provides dense reconstruction of the scene, however in an
indoor environment it will cause lots of noise due to the
inaccurate depth estimation of the points. Therefore, ORB
SLAM and ORB SLAM 2 algorithms showed better per-
formance in mapping an indoor environment. It should also
be mentioned that LSD-SLAM is oriented for Large Scale
environments, whereas ORB SLAM can be applied for both
outdoor and indoor environments.

Table 2 summarizes the comparison of the SLAM algo-
rithms that we tried for the implementation as well as the
improved SLAM version that we are using to which we
added extra features to the ORB SLAM 2 implementation.
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Table 2: Comparison of SLAM algorithms

LSD ORB ORB-2 Ours

RGB-D support 7 7 3 3

Fast initialization 7 7 3 3

Accurate localization 7 3 3 3

Map saving & reusing 7 7 7 3

Fast vocabulary load 7 7 7 3

Recognition + SLAM 7 7 7 3

It can be clearly seen that the final result we obtained is
the best among the others. As it was explained before, the
most important features that include map saving and reusing
play a significant role while performing SLAM with Pepper.
Fast initialization for the tracking process is also achieved
by leveraging depth camera as well as the decrease of the
launching time due to the serialization of the vocabulary.

The results after running SLAM + object recognition
are illustrated in Fig. 10. Here we can observe that the
map on the left (Fig. 10(a)) is a preliminary result that
has been obtained before the loop closure. When the robot
arrived to its initial position, the system closed the loop
and reconstructed a map of the environment as well as the
trajectory of the robot as shown in Fig. 10(b). Blue markers
on both images represent the inserted keyframes and the red
(active) and black (inactive) points are the keypoints.

(a) Before (b) After

Fig. 10. Illustrations for the loop closing of ORB-SLAM2

After the loop closure we saved the map and reloaded it
again to perform only localization of the robot and to test
object recognition and localization on the map. The result
of this test has been shown in the Fig. 11. From the top-left
image we can observe the previously built map and the robot
position as well as the position and label of the recognized
object, which is shown in the top-right image. The bottom
image shows the robot and the part of the environment where
we performed our tests.

VIII. FINAL REMARKS & FUTURE WORK

In this section we summarize the results of our project and
also introduce possible areas for the future work.

One of the main aspects is that an innovative application
integrating a robust object recognition algorithm with a
modified ORB SLAM 2 was proposed. This system was

Fig. 11. Putting markers of detected object. Top-left: Map and the inserted
marker; Top-right: Recognized object; Bottom: True location of the robot
and object.

implemented and successfully tested on the humanoid Pepper
robot under the scheme of European Robotics League.

As a summary, for the object recognition algorithm, SIFT
features were extracted and then matched using kd-tree
nearest neighbour search. Then, whether an object was recog-
nized or not is decided through RANSAC. The algorithm has
shown its robustness through its consistent detection, high
accuracy without false alarm, and rotational invariance, etc.

Regarding the SLAM application, we have modified and
improved the open source ORB SLAM 2 in following ways:
enabling the map saving and reusing it, accelerating the
vocabulary loading and most importantly, integrating the
object recognition.

The whole system is successfully working on Pepper
despite of the poor quality sensors, especially the cameras’
resolution and frame rate as well as the joint overheating
problem.

Finally, some future work can easily be implemented on
top of our proposed application, for example:

• Autonomous control of the velocity while building the
map.

• Add path planning algorithms (e.g. Rapidly-exploring
Random Tree, Rotational Plane Sweep, etc.).

• Make Pepper to go to the marked position of a certain
object and be able to grasp it and take the object back
to the initial position.
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Joystick teleop, and José Marı́a Sola Durán for his object
recognition code framework.

REFERENCES

[1] ALdebaran Softbank Group. Pepper Documentation NAOqi. ALde-
baran Sofbank Group.

[2] K-K Sung and Tomaso Poggio. Example-based learning for view-
based human face detection. IEEE Transactions on pattern analysis
and machine intelligence, 20(1):39–51, 1998.

[3] Michael J Swain and Dana H Ballard. Color indexing. International
journal of computer vision, 7(1):11–32, 1991.

[4] Bernt Schiele and James L Crowley. Object recognition using
multidimensional receptive field histograms. In European Conference
on Computer Vision, pages 610–619. Springer, 1996.

[5] Jan J. Koenderink and Andrea J van Doorn. Generic neighborhood
operators. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 14(6):597–605, 1992.

[6] Oskar Linde and Tony Lindeberg. Object recognition using com-
posed receptive field histograms of higher dimensionality. In Pattern
Recognition, 2004. ICPR 2004. Proceedings of the 17th International
Conference on, volume 2, pages 1–6. IEEE, 2004.

[7] Henry Schneiderman and Takeo Kanade. A statistical method for
3d object detection applied to faces and cars. In Computer Vision
and Pattern Recognition, 2000. Proceedings. IEEE Conference on,
volume 1, pages 746–751. IEEE, 2000.

[8] Serge Belongie, Jitendra Malik, and Jan Puzicha. Shape matching and
object recognition using shape contexts. IEEE transactions on pattern
analysis and machine intelligence, 24(4):509–522, 2002.

[9] Paul Viola and Michael Jones. Rapid object detection using a boosted
cascade of simple features. In Computer Vision and Pattern Recog-
nition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer
Society Conference on, volume 1, pages I–511. IEEE, 2001.

[10] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. SURF: Speeded
up robust features. In In ECCV, pages 404–417, 2006.

[11] Stefan Leutenegger, Margarita Chli, and Roland Y Siegwart. BRISK:
Binary robust invariant scalable keypoints. In 2011 International
conference on computer vision, pages 2548–2555. IEEE, 2011.

[12] A comparison of keypoint descriptors in the context of pedestrian
detection: FREAK vs. SURf vs. BRISK, author=Schaeffer, Cameron,
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