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Abstract— Unforeseen events are frequent in the real-world
environments where robots are expected to assist, raising
the need for fast replanning of the policy in execution to
guarantee the system and environment safety. Inspired by
human behavioural studies of obstacle avoidance and route
selection, this paper presents a hierarchical framework which
generates reactive yet bounded obstacle avoidance behaviours
through a multi-layered analysis. The framework leverages the
strengths of learning techniques and the versatility of dynamic
movement primitives to efficiently unify perception, decision,
and action levels via low-dimensional geometric descriptors of
the environment. Experimental evaluation on synthetic envi-
ronments and a real anthropomorphic manipulator proves that
the robustness and generalisation capabilities of the proposed
approach regardless of the obstacle avoidance scenario makes
it suitable for robotic systems in real-world environments.

I. INTRODUCTION

Robust reactive behaviours are essential to ensure the
safety of robots operating in unstructured environments. For
instance, the on-going pick-and-place policy of a robotic sys-
tem sorting and storing items in a home environment might
be interrupted by the sudden appearance of an obstacle in the
middle of a pre-planned trajectory. In this scenario, the robot
must be able to modulate its behaviour online to succeed in
its task while providing some safety guarantees. Given the
expertise of humans in dealing with these conditions, it is
natural to adopt human behaviour for robotic control.

Human behavioural studies of obstacle avoidance and
route selection [1] have shown that the dynamics of percep-
tion and action consist of (i) identifying the informational
variables useful to guide behaviour and to regulate action,
and (ii) interacting with the environment using a particular
set of dynamic behaviours. One possible policy descriptor
allowing for this hierarchical control are dynamic movement
primitives (DMPs) [2]. DMPs are differential equations en-
coding kinematic control policies towards a goal attractor.
Their transient behaviour can be shaped via a non-linear
forcing term, which can be initialised via imitation learning
and used to reproduce an observed motion while generalising
to different start and goal locations, as well as task durations.

A key feature of DMPs is that they allow for online modu-
lation via coupling term functions that create a forcing term.
Coupling terms have been exploited for many applications,
such as avoidance of joint and workspace limits [3], force
control for environment interaction [4], [5], dual-arm manip-
ulation [4], [6] and reactive obstacle avoidance [7]–[11]. This
work focuses on the latter challenge, which historically has
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Fig. 1: Proposed hierarchical framework for learning and
producing generalisable obstacle avoidance behaviours. Pre-
planned start-go-goal (blue) and modulated policy (red).

been approached using potential fields [7], [8], analytical [9]
and learning methods [10], [11] (see Section II). As further
discussed in Section II-C, analytical formulations become
less reactive for imminent collisions (dead-zone problem).
Moreover, these approaches do not provide any guidance
to the reactive behaviour, thus limiting their applicability to
free-floating obstacles. Additionally, analytical formulations
uniquely deal with point-mass obstacles and systems. In
an attempt to address this latter issue, recent proposals
learn coupling terms for a small set of obstacle geometries
described by an array of markers on their surface [10],
[11], but they fail to generalise actions to novel obstacles.
These works are notable in learning the coupling terms from
human demonstration. Nonetheless, providing a rich set of
demonstrations involving various obstacles geometries can
be time-consuming and prone to measurement noise.

This paper presents the hybrid DMP-learning-based ob-
stacle avoidance framework schematised in Figure 1. The
proposed approach addresses the limitations of the precedent
works with a layered perception-decision-action analysis [1].
The main contributions at the action level (see Section III)
are (i) reformulating the coupling terms to provide dead-
zone free behaviours, and (ii) guiding the obstacle avoidance
reactivity to satisfy task-dependant constraints, while the
main contributions at the perception-decision level (see Sec-
tion IV) are (iii) regulating action according to the extracted
unified system-obstacle low-dimensional geometric descrip-
tor, and (iv) learning to regulate the action level via explo-
ration of the parameter space. The experimental evaluation
reported in Section V demonstrates that the overall proposed
approach generalises obstacle avoidance behaviours to novel
scenarios, even when those involve multiple obstacles, or are
uniquely described by partial visual-depth observations.
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II. RELATED WORK
This paper proposes a reactive approach that endows a

system with the ability to modulate its policy to avoid
unexpected obstacles. The selected strategy uses DMPs for
encoding any desired policy and defining an obstacle avoid-
ance behaviour as a coupling term. This section introduces
DMPs and coupling terms for obstacle avoidance as they
constitute the fundamentals of this work.

A. Dynamic Movement Primitives
DMPs are a versatile framework that encode primitive

motions or policies as nonlinear functions called forcing
terms [2]. The DMPs equations define the system’s state
transition, which can be converted into actuator commands
by means of inverse kinematics and inverse dynamics. For
a one-degree of freedom (DoF) system, the system’s state
transition is described by the following set of nonlinear
differential equations, known as the transformation system:

τ ż = αx(βx(gx − x)− z) + f(·) + C(·), (1)
τ ẋ = z, (2)

where τ is a scaling factor for time, x is the system’s
position, z and ż respectively are the scaled velocity and
acceleration, αx and βx are constants defining the attraction
dynamics towards the model’s attractor gx, and f(·) and C(·)
are the forcing and coupling term, respectively.

The forces generated by the forcing and coupling terms de-
fine the transient behaviour of the transformation system. It is
common to model the forcing term f(·) as a weighted linear
combination of nonlinear radial basis functions (RBFs). The
evaluation of f(·) at phase k ∈ k is defined as:

f(k) =

∑N
i=1 wiΨi(k)∑N
i=1 Ψi(k)

k, (3)

Ψi(k) = exp
(
−hi(k − ci)2

)
, (4)

where ci and hi > 0 are the centres and widths, respectively,
of the i ∈ [1, N ] RBFs, which are weighted by wi and
distributed along the trajectory. The weights can be initialised
via imitation learning and used to reproduce the motion with
some generalisation capabilities to changes in start and goal
positions. The duration of the motion can be adjusted by
the scaling factor τ , which modifies the canonical system
defining the transient behaviour of the phase variable k as:

τ k̇ = −αkk, (5)

where the initial value of the motion’s phase k(0) = 1 and
αk is a positive constant.

A common strategy to extend the spatial generalisation
capabilities of DMPs is to reference them in a local frame,
whose pose in the space is task-dependent [2], [11]. In this
work’s context, the unit vectors of the local frame are defined
as follows: the x-axis points from the start position towards
the goal position, the z-axis points upwards and is orthogonal
to the local x-axis, and the y-axis is orthogonal to both local
x-axis and z-axis following the right-hand convention.

A robot with multiple DoFs uses a transformation system
for each DoF, but they all share the same canonical system.

B. Coupling Terms for Obstacle Avoidance

Early coupling terms for obstacle avoidance were formu-
lated as repulsive potential fields [7], [8]. Potential fields
suffer from local minima and can be computationally ex-
pensive to calculate on the fly. Alternatively, some coupling
terms analytically formalise the influence of an obstacle on
the system’s behaviour [9]. As depicted in Figure 2a, a point-
mass system with position x ∈ R3 and velocity ẋ ∈ R3 has a
heading θ ∈ SO(2) towards a point-mass obstacle. To avoid
a collision, the coupling term generates a repulsive force:

C(·) = R ẋ θ̇, (6)

where R ∈ SO(3) is a π/2 rotation matrix around the vec-
tor r = (xobstacle − x)× ẋ. The respective obstacle-system
position xobstacle − x and the system’s velocity ẋ define the
plane P ∈ R2 where the system is desired to steer away from
the obstacle with a turning velocity θ̇ defined as:

θ̇ = γ θ exp(−β |θ|), (7)

where γ and β respectively scale and shape the mapping
θ → θ̇ defined in (7) and represented in Figure 2b.

Building on (6)-(7), human demonstrations were used to
retrieve the required parameters to circumvent two non-point
obstacles, particularly a sphere and a cylinder [10]. More re-
cently, coupling terms were formulated as independent neural
networks (NNs) modelling the desired obstacle avoidance
behaviour for a sphere, a cylinder and a cube [11]. These
methods do not provide any strategy to avoid obstacles not
observed in training time, and they rely on markers identify-
ing an obstacle’s boundaries. Their evaluations are conducted
either in simulation or in single-obstacle scenarios. Hence,
their performance in realistic scenarios is yet to be tested.

C. Discussion and Contribution

State-of-the-art on coupling terms modelling obstacle
avoidance behaviours suffers from four major limitations.
First, as illustrated in Figure 3, the analytical term (6)-(7) has
a dead-zone where the system becomes less reactive as the
heading towards the obstacle narrows, thus compromising
the method’s reliability. Second, there is no strategy to
guide the behaviour’s reactivity towards a preferred route
to circumnavigate an obstacle. For example, in the scenario
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Fig. 2: Original coupling terms for obstacle avoidance [9].
(a) Heading angle θ according to velocity vector ẋ and the
relative obstacle-system position in P-plane. (b) Change of
steering angle θ̇ subject to heading angle θ as defined by (7).



depicted in Figure 1, there is no constraint on the reactive
behaviour preventing the system from hitting the table. Third,
when attempting to deal with non-point obstacles, their
performance drastically decreases for novel scenarios due
to the absence of global features identifying the obstacle
geometry during the learning process. Fourth, these works
learn the coupling terms from demonstration, which can be
time-consuming and prone to measurement noise.

All these issues are jointly addressed within the proposed
hierarchical framework, which hybridises the versatility of
DMPs and the strengths of learning techniques. Specifically,
in Section III, (6)-(7) is reformulated at the action level as
a conjunction of coupling terms whose obstacle avoidance
behaviour is dead-zone free and can be guided. Then, in
Section IV, the formalised action level is exploited to learn
via exploration of the parameter space how to regulate the
behaviour subject to both the end-effector’s and obstacle’s
geometric properties. This work considers a unified system-
obstacle low-dimensional geometric descriptors identifying
the relevant features to the action level, thus allowing for
enhanced generalisation even in novel real-world scenarios.

III. COUPLING TERMS FOR DEAD-ZONE FREE
AND GUIDED OBSTACLE AVOIDANCE

The proposed hierarchical framework to learn and produce
generalisable obstacle avoidance behaviours regardless of
the scenario comprises three layers. The DMP-based action
level is formalised as a composition of two coupling terms
which (i) generate robust obstacle avoidance behaviours, and
(ii) guide these in a particular direction of the task space.
The parametrisation needs of these terms allow for regulating
their actuation scope via reasoning at the decision level.

A. Inherently Robust Obstacle Avoidance

Current coupling terms for obstacle avoidance in the lit-
erature suffer from dead-zones, i.e. a heading range towards
the obstacle for which the system becomes incoherently
less reactive. Ideally, the expected behaviour of those terms
would be to become more reactive as (i) the heading of
the system is more aligned towards an obstacle, and (ii) the
system-obstacle distance is smaller. Bearing these conditions
in mind, the coupling term in (6)-(7) is reformulated as:

COA(·) = R ẋ α sign(θ) exp

(
− θ

2

ψ2

)
exp
(
−κ d2

)
, (8)

where α sign(θ) exp
(
−θ2/ψ2

)
addresses the first issue by

shaping the absolute change of steering angle as a zero-mean
Gaussian-bell function, and exp

(
−κ d2

)
tackles the second

requirement by regulating the coupling term effect according
to a parameter k and the system-obstacle distance d.

Figure 3 highlights the increase in robustness of the for-
mulated coupling term (8) in contrast to the original term (6)-
(7). While the original coupling term (black curves) produces
low reactivity for narrow headings towards an obstacle, the
dead-zone free proposal (red curves) reacts the most (see
Figure 3a). This reformulation has a significant impact in
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Fig. 3: Dead-zone issue in the original (6)-(7) (black) and
proposed (8) (red) coupling terms. (a) (8) reacts for narrow
headings towards the obstacle. (b) (6)-(7) fails where (8)
smoothly circumvents the point-mass obstacle (grey circle).

the task space, where (8) succeeds on a scenario where (6)-
(7) fails to generate an obstacle avoidance behaviour which
does not collide with the point-mass obstacle (see Figure 3b).

B. Guiding the Obstacle Avoidance Reactivity

The velocity vector ẋ of a point-mass system also rep-
resents the system’s orientation. Consequently, ẋ plays a
critical role in determining both the actuation P-plane and the
direction of turning θ̇. Overall, the behaviour encapsulated
in (8) consists of turning to the opposite direction where the
obstacle is with respect to the system’s heading or velocity
vector ẋ. Although this reactive motion might be the safest
behaviour in front of an obstacle, there are many situations
where guiding the system towards a particular route might
be of interest, such as in constrained environments or when
aiming for a trajectory providing a minimum cost.

Given the influence of the system’s heading ẋ on the
overall obstacle avoidance reaction, it is natural to modulate
ẋ to guide the reactivity of (8) through a preferred route.
Within the DMP motion descriptor, this can be formulated
through a coupling term that creates an attractive forcing
term to reduce the heading error θ̂ between the current ẋ
and a desired ẋd system’s direction as:

CHG(·) = R′ ẋ α θ̂ exp
(
1 + κ d2

)
(9)

where R′ ∈ SO(3) is a π/2 rotation matrix around the vector
r′ = ẋ× ẋd, and the term α exp

(
1 + κ d2

)
ensures that (8)

and (9) act in counterphase when parameterised for the same
α and κ. This is, (9) uniquely modifies the system’s heading
when not in proximity to obstacles, where (8) takes over the
control to ensure the system’s safety.
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Fig. 4: Route selection for obstacle avoidance in (a) single
and (b) multi-object setups. Reactive avoidance (blue), one-
time decision (red), two-times decision (green).



C. Coupling Terms Composition

Figure 4 depicts the significance of using (8) in conjunc-
tion with (9) to perform route selection of obstacle avoid-
ance. This is formalised within the DMP in (1)-(2) as the
composition of coupling terms C(·) =

∑
i C

i
OA(·) + C i

HG(·),
where C i

OA(·) and C i
HG(·) generate the corresponding forcing

terms with respect to the ith obstacle in the scenario.
This composition allows, in a single-obstacle scenario (see
Figure 4a), to guide the reactive behaviour (blue trajectory) in
a different direction (red trajectory) by temporarily defining
the initial desired heading towards the upper part of the task
space. The same applies to multi-obstacle environments (see
Figure 4b), where the system’s heading can be modified at
multiple decision points to obtain a preferred route (green
trajectory). In both scenarios, the actuation scope of the
coupling term for guiding the system was set manually
for illustration purposes. Alternatively, these decision points
could be defined by a task-dependant module.

D. Proof of Lyapunov’s Stability

The addition of coupling terms can imperil the inherent
stability properties of DMPs [2]. Authors in [10] proved with
Lyapunov’s theory that the overall dynamical system remains
stable when the coupling terms generate a forcing term or-
thogonal to the system’s velocity vector. The coupling terms
formulated in (8) and (9) satisfy this condition, therefore
proving the global stability of the proposed action level.

IV. LEARNING OBSTACLE AVOIDANCE
FOR NON-POINT OBJECTS

The set of coupling terms formalised in the previous sec-
tion efficiently generates guided collision-free trajectories for
point-mass objects, i.e. obstacles and systems. Nonetheless,
objects in real-world scenarios present different shapes and
sizes. This section details the encoding of objects as low-
dimensional geometric descriptors, which allows for (i) the
design of a learning module that regulates the action level to
generalise over different obstacle geometries while consid-
ering the system’s geometry, and (ii) the use of heuristics to
rapidly perform route selection in constrained environments.

A. Superquadrics as Geometric Approximates

Objects obstructing the execution of a policy might present
different shapes and dimensions. This geometric diversity
complicates the design of an intelligent module able to gen-
eralise obstacle avoidance behaviours across geometries [11].
This work considers global features to approximate the
geometric properties of an object. One possible encoding
strategy are superquadrics [12], which have been used,
among others, to ease the computation of system-obstacle
distances [13], and to generate repulsive potential fields [14].
Alternatively to these task space applications, this work is
interested in the low-dimensional parametric encoding of
such geometric approximate, which is defined as:

F (x, y, z,λ) :

((
x

λ1

) 2
λ5

+

(
y

λ2

) 2
λ5

)λ5
λ4

+

(
z

λ3

) 2
λ4

, (10)

where F (·) defines whether a given 3D point (x, y, z) lies
inside (F < 1), outside (F > 1), or on the surface (F = 1)
of a superquadric described by λ = [λ1, ..., λ5]. In particular,
(λ1, λ2, λ3) set the superquadric semi-axes lengths, and
(λ4, λ5) parameters define the superquadric shape.

The parameter vector λ can be estimated from a discrete
representation of the obstacle’s surface by minimisation of:

min
λ

N∑
i=1

(√
λ1λ2λ3 (F (xi, yi, zi,λ)− 1)

)
, (11)

where
√
λ1λ2λ3 penalises the fitting of large superquadrics.

B. Unified Low-dimensional Geometric Descriptors

The process in (10)-(11) provides a geometrical descrip-
tor λ from a discrete representation of an object. However,
it is of interest to obtain a descriptor accounting for both
the system’s and obstacle’s geometry. Figure 5 schematises
the extraction of a unified obstacle-system low-dimensional
geometric descriptor. An approximate of the system’s ge-
ometry (see blue prism in Figure 5a) is used to dilate [15],
[16] the obstacle’s discrete representation (see Figure 5b).
The dilated obstacle representation is then encoded using
(11) while imposing λ4 = λ5 = 1, i.e. restricting the su-
perquadric to shape as an ellipsoid. Figure 5c portrays the
significance on the descriptor’s difference when considering
the raw obstacle representation (blue ellipsoid) and its dilated
version (rose ellipsoid). Interestingly, ellipsoids hold the
property that any random projection or section of these
results in an ellipse, providing a strategy to extract the unified
obstacle-system’s geometric features relevant to the obstacle
avoidance coupling term. This is, the P-plane defined by
the respective obstacle-system position xobstacle − x and
the system’s heading ẋ, intersects the unified geometric
approximation. Thus, the descriptor λ can be further re-
duced to λ′ = (λ′1, λ

′
2) ∈ R2 such that λ′ = g(λ) where

g(·) : R5 → R2 maps an arbitrary vector onto the P-plane.
The resulting low-dimensional descriptor is an ellipse laying
on the P-plane with semi-axis lengths λ′ (see Figure 5d).
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Fig. 5: Extraction of unified low-dimensional descriptors
accounting for the (a) end-effector’s and (b) obstacle’s ge-
ometry. (c) Ellipsoid (rose) fitting the dilated obstacle cloud.
(d) Relevant descriptor λ′ along the P-plane (red ellipse).



C. Geometry-conditioned Parameter Regressor

Leveraging the unified low-dimensional descriptor λ′ from
Section IV-B, this section proposes a method to learn the
correspondence between λ′ and the non-independent param-
eters (α,ψ, κ) of the coupling term, subject to a user-defined
clearance ∆, i.e. the minimum distance between the end-
effector and the obstacle. This multiple target regression
problem is formulated as a regressor chain (RC) [17], which
defines an ordered chain U = (Y1, Y2, Y3) of single target
regressions. This is, given an input vector h = {λ′,∆}, the
proposed RC-based learning module is composed of three
models: Y1 : h→ κ adjusts the actuation span of the coupling
term, Y2 : (h, κ)→ ψ regulates the relevance of the relative
system-obstacle heading, and finally Y3 : (h, κ, ψ)→ α tunes
the strength of the behaviour. Each regressor Yi is modelled
as a NN which provides a powerful strategy to learn and
represent approximations to non-linear mappings, and is
suitable for reactive decisions due to its rapid response.
Considering the relevance of the input features, each NN
regressor is arranged with four layers; the hidden layers are
hyperbolic tangent sigmoid units, and the output layer is a
log-sigmoid to avoid negative settings of the targets.

It should be noted that the regulation of the action level
formalised in Section III is conducted along the P-plane. As
explained previously in Section IV-A, this sub-space contains
all essential information to circumnavigate an obstacle and
is efficiently defined using the relative system-obstacle state.
Namely, changes in the obstacle avoidance scene such as
different start and goal positions, obstacle location and
geometries do not alter the encoding of the problem in the P-
plane. Therefore, the prediction capabilities of the designed
RC-based learning module extend to a wide range of setups,
including in the presence of multiple obstacles in the scene.

D. Route Selection via Heuristic Cost Rings

Real-world environments and physical systems constrain
the amount of feasible reactive behaviours. Exhaustively
evaluating all possible directions in SO(3) which satisfy
these additional constraints can slow the decision response.
To ease the reasoning complexity of the route selection prob-
lem, this work proposes a twofold heuristic analysis called
cost rings which (i) considers an orthographic projection of
the obstacle onto the YZ-plane ∈ R2 of the local frame, i.e.
confining the direction space ω ∈ SO(2), to then efficiently
(ii) find the obstacle avoidance direction ωd minimising a
metric η(ω). The resulting direction ωd is used with the
coupling terms composition formulated in Section III-C to
guide the obstacle avoidance behaviour towards ωd.

The advantage of route selection via heuristic cost rings
is exemplified in Figure 6, where the path cost η(ω) is
determined according to three metrics: (i) the physical con-
straints imposed by the table ηtable(ω), (ii) the length of the
trajectory ηlength(ω), and (iii) the robot’s workspace limit
ηlimits(ω), such that ωd can be found by minimisation of:

min
ω
ηtable(ω) + ηlength(ω) + ηlimits(ω), (12)

   world

  start

limits
length
table
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(a) (b)

Fig. 6: Route selection via heuristic rings. (a) Cost evaluation
on the local YZ-plane to penalise workspace limits, long tra-
jectories, and collisions with the table. Overall best direction
is marked in magenta. (b) A reactive behaviour (blue) would
lead the system colliding with the table, whereas the guided
behaviour (red) generates the route with lowest cost.

where ηtable(ω) = 1 if the end-effector would collide with
the table and 0 otherwise, ηlength(ω) ∈ [0, 1] is the nor-
malised trajectory length, and ηlimits(ω) = 1 if the end-
effector would move outside of its workspace and 0 other-
wise. Figure 6a illustrates these estimated costs rings and the
resulting direction ωd ∈ ω (magenta) with minimum cost. As
depicted in Figure 6b, using this reasoning to initially guide
the behaviour enables the system to avoid the obstacle in
the direction with lowest cost (red), whereas the non-guided
reactive behaviour leads with collision with the table (blue).

E. Convergence to Goal

The required path π̂ to avoid obstacles may be longer
than the pre-planned trajectory π, thus needing more time
to finalise the encoded task. This fact is especially critical
when dealing with non-point objects as failing to account
for this can imperil convergence to the desired goal [11]. To
address this issue, this work regulates the DMP duration by
scaling τ = length(π̂)/length(π), i.e. an approximate of the
increase of trajectory length. Here, length(π̂) is estimated
with linear interpolation of the finite sequence of R3 points
{xs,x

1
p, ...,x

N
p ,gx}, where xs and gx are the start and goal

positions, and xi
p is the extreme point of the ellipse encoding

the i ∈ [1, N ] dilated obstacle’s geometry along its P-plane.

V. EXPERIMENTAL EVALUATION

The proposed framework has been evaluated in simulated
environments and on a physical system. This section first
explains the training of the RC model via exploration of
the parameter space. Thereafter, it reports the performance
and generalisation capabilities of the proposed approach in
familiar and novel obstacle avoidance settings. Finally, this
section details the deployment of the proposed framework on
an anthropomorphic Franka Emika Panda arm engaged in a
start-to-goal policy in the presence of unplanned obstacles.

An extended illustration of the experimental evaluation
is documented in: https://youtu.be/lym5cCbjI3k,

https://youtu.be/lym5cCbjI3k


and the corresponding source code can be found in:
https://github.com/ericpairet/ral_2019.

A. Training the RC-based Learning Module

This work has designed a RC-based learning module to
regulate the action level according to a unified obstacle-
system descriptor λ′ and a possible clearance constraint ∆.
The unconstrained model is denoted as RC(λ′), while the
constrained model is referred to as RC(λ′,∆). The training
of these models is conducted leveraging the knowledge of the
action level to create a synthetic dataset via exploration of the
parameter space. This is, given different obstacle avoidance
scenarios, training explores the parameters {α,ψ, κ} of the
coupling term (8) generating a collision-free trajectory.

Bearing in mind that the learning module uniquely reg-
ulates the action level along its plane of actuation, 100
synthetic scenarios were created to simulate possible inter-
sections between a unified system-obstacle ellipsoid approxi-
mation and the actuation plane P ∈ R2. This resulted in 100
ellipses parameterised with semi-axis values λ′ = (λ′1, λ

′
2)

uniformly sampled in the range 2.5 to 25cm. Each of these
sections was placed in the middle of a one-metre length start-
goal baseline. For each scenario, a set of trajectories were
generated using (8) with a 50× 50× 50 grid of the param-
eters {α,ψ, κ}. Only those input-target {(λ′1, λ′2), (α,ψ, κ)}
pairs involving a collision-free trajectory were integrated into
the dataset along with the resulting clearance.

The RC architectures were trained using a 70% of the syn-
thetic dataset. Each NN was trained independently using the
Levenberg-Marquardt algorithm with a random initialisation
of the weights and biases. The remaining 30% of the dataset
was used to test the performance of the trained RC models.
Since the aim of a RC model is to reduce the prediction
error on every single target [17], each model Yi was validated
by computing the normalised mean squared error (NMSE)
on the training and testing sets. As shown in Table I, the
parameter prediction error of the models reduces significantly
when considering the clearance in the input vector h. This
is because the clearance allows differentiating the influence
of the targets among all possible collision-free trajectories.
It is worth noting that the performance of the RC does not
deteriorate when being evaluated on the test set.

B. Experiments on Familiar Scenarios

The performance of both RC(λ′) and RC(λ′,∆) models
in the P-plane space was evaluated for the same obstacle
geometries as in the training dataset, i.e. 100 ellipses. For the
RC(λ′,∆) model, the considered constraints on the clearance

NMSE(Y1) NMSE(Y2) NMSE(Y3)

train test train test train test

RC(λ′) 0.539 0.543 0.802 0.802 0.893 0.897
RC(λ′, ∆) 0.251 0.253 0.244 0.243 1.6e-4 1.7e-4

TABLE I: Prediction error on every single target of the two
modelled RC architectures for the training and test datasets.
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Fig. 7: (a) Clearance and (b) convergence of the avoidance
behaviours generated in familiar scenarios, when scaling the
trajectory duration (black plots) and when not (red plots).

were ∆ = {0.05, 0.1, 0.15, 0.2, 0.25} metres. All six mod-
els were evaluated with and without scaling the trajectory
duration τ according to its estimated length as explained
in Section IV-E. Overall, this led to the testing of the RC
architecture under 12 different settings. Performance in the
P-plane space was evaluated for the metrics (i) number of
collisions, (ii) minimum distance to an obstacle (clearance),
and (iii) distance to goal (convergence). The obtained results
over the 1,200 scenarios are illustrated in Figure 7.

Figure 7a and Figure 7b respectively represent the clear-
ance to the obstacle and convergence to the goal for the
1,200 scenarios evaluated across the 12 settings of the RC
architecture. Overall, constraining the model with a desired
clearance leads to more bounded behaviours. However, as
the clearance constraint increases, the convergence rapidly
deteriorates for those models not scaling the trajectory du-
ration (red boxes). Instead, when scaling the time (black
boxes), the convergence is at most of 3cm for the most
constrained model RC(λ′, 0.25). This fact highlights the
importance of scaling the time when larger trajectories are
required. Indifferently from the model setup, none of the
1,200 conducted tests resulted with a trajectory colliding with
an obstacle. The remainder of the experimental evaluation
is conducted with the RC(λ′, 0.15) model and scaling the
trajectory duration according to its estimated length.

C. Experiments on Novel Scenarios

Given the variety of obstacle avoidance scenarios that a
system may face in the real-world, the proposed RC(λ′, 0.15)
model was evaluated for its performance and generalisation
capabilities on scenarios not seen during the training process.
Notably, the approach was tested for its suitability to deal
with three-dimensional (3D) obstacles via the extraction of
relevant unified low-dimensional geometrical features laying
on the P-plane as described in Section IV-A.

Novel 3D scenarios were created by sampling the location
and dilated geometry of the obstacle randomly. The obstacle
was arbitrarily located along the x-axis between the start and
goal configurations preserving 5cm of margin, and around the

https://github.com/ericpairet/ral_2019


Clearance to Convergence n◦ of
obstacle [m] to goal [m] collisions

mean min mean max

Goal at 0.5m 0.144 -5.01e-4 4.41e-4 0.017 2
Goal at 1.0m 0.184 0.060 4.23e-4 0.017 0
Goal at 1.5m 0.196 0.068 5.22e-4 0.023 0
Goal at 2.0m 0.202 0.076 6.49e-4 0.027 0

TABLE II: Clearance, convergence and number of collisions
of the trained RC(λ′, 0.15) model for 4,000 novel settings.

baseline between -0.4 and 0.4m along both the y-axis and
z-axis. The unified system-obstacle ellipsoid approximation
had random width, height and length within the spectrum
5 to 50cm, leading to representative candidates of possible
object geometries in real-world environments. This spectrum
corresponds to semi-axis values λ1, λ2 and λ3 laying in the
range 2.5 to 25cm. These boundaries also ensured that none
of the extracted low-dimensional features λ′ would result
beyond the limits for which the RC model was trained for.

A 1,000 novel 3D scenarios were created for the different
start-to-goal baselines of 0.5, 1.0, 1.5 and 2.0m along the
x-axis of the local frame, adding up to a total of 4,000
evaluations. The semi-axis λ1 was limited to a maximum of
20cm for the baseline of 0.5m to be consistent with the 5cm
margin across experiments. All environments required the ac-
tion level to modulate a start-to-goal policy to avoid collision
and preserve the desired clearance. Out of the 4,000 tests,
1,296 environments already had the baseline in collision
with the obstacle. The performance of RC(λ′, 0.15) on the
unseen settings was evaluated for the metrics (i) number of
collisions, (ii) clearance to an obstacle, and (iii) convergence
to goal. Table II summarises the extracted metrics across
the evaluation, and Figure 8 depicts the performance of the
proposal on some novel single and multi-obstacle settings.

Results in Table II reflect the performance of the designed
RC(λ′, 0.15) model when dealing with 3D scenarios via
their section on the P-plane. The overall success rate is of
99.95% on novel scenarios while providing, in average, a
clearance similar to the requested one of 0.15m and a close
convergence to the goal. This implies an enhancement of
31.75 times over the success rate reported on known objects
in [11]. However, the performance of the approach is slightly
compromised in some scenarios, obtaining clearances of 6cm
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Fig. 8: Generalisation capabilities of the trained RC(λ′, 0.15)
model in novel settings. Parameters λ′ are extracted from the
relevant section (red ellipse) where the coupling term acts.

and convergences up to 2.7cm. The proposed approach could
not cope uniquely with two scenarios out of 4,000, where
the generated trajectory penetrated 0.501mm an obstacle of
40cm along the x-axis and 50cm along the y-axis and z-axis
placed in the middle of a 0.5m long baseline. Albeit these
extreme scenarios for which more data could be provided at
training time, the proposed approach has proved to generalise
not only to different object sizes and locations, but also
to different start-to-goal baselines. Further experimentation
also showed the suitability of the framework to deal with
multi-obstacle scenarios (see Figure 8b). Since the action
level is referenced in a local frame (see Section II-A), the
performance of the framework does not deteriorate regardless
of the local frame’s pose in the task space. Within the local
frame, the outstanding generalisation capabilities are mainly
due to regulating action according to the relative system-
obstacle state defining the P-plane, and extracting relevant
system-obstacle low-dimensional geometrical descriptors.

D. Experiments on a Robotic Platform

The proposed hierarchical framework for obstacle avoid-
ance has been deployed on an anthropomorphic 7-DoF
Franka Emika Panda arm operated with OROCOS [18].
The DMP-encoded system’s transient behaviour is converted
to joint configurations using a Cartesian inverse dynamic
controller with null space optimisation. The environment is
partially observed with a depth camera ASUS Xtion previ-
ously calibrated with Aruco markers [19]. The acquired point
cloud is processed applying standard filtering techniques to
segment the clusters describing obstacles and the table. The
partial observation of each obstacle is dilated to also account
for the system’s geometry (see Section IV-B). The location
of the table is used to constrain the reactive behaviour along
the upper part of the task space (see Section IV-D).

As in [10], [11], the test-bed consisted of obstacles
interrupting a straight trajectory underlying a start-to-goal
policy. However, differently than [10], [11], the assortment
of considered obstacles had not been seen before. This
included, but was not limited to, regular objects, such as the
cardboard box in Figure 1, irregular objects, such as the pile
of plastic bottles in Figure 9c, and also aleatory combinations
of them, such as the cluttered environment with six obstacles
in Figure 9a and Figure 9b. As summarised in Table III, the
robot engaged in the pre-planned policy (blue trajectories)

Clearance to
obstacle [m]

Convergence
to goal [m]

n◦ collisions &
∆ < 0.15m

regular pp. fail fail 1 & 1
(Fig. 1) mod. 0.168 9.58e-3 0 & 0

irregular pp. fail fail 1 & 1
(Fig. 9c) mod. 0.163 4.17e-3 0 & 0

multi-obs pp. fail fail 2 & 5
(Fig. 9b) mod. 0.172 1.29e-2 0 & 0

TABLE III: Clearance, convergence, number of collisions
and unsatisfied clearances for the pre-planned (pp.) and
modulated (mod.) start-to-goal policies on the real robot.
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Fig. 9: Panda arm engaged in a start-to-goal policy (blue trajectories) while modulating its behaviour (red trajectories).
(a) Environment perception with unified low-dimensional encoding of the system’s and obstacle’s geometry (rose ellipsoids).
Proposed hierarchical framework dealing with (b) multiple obstacles in a cluttered environment, and (c) an irregular obstacle.

would impact with the obstacles. Instead, endowing the robot
with the ability to modulate such policy, allows the system to
successfully circumvent all obstacles with the desired 0.15m
clearance while converging to the goal (red trajectories).

The presented results demonstrate that the proposed hi-
erarchical framework which (i) extracts relevant geometric
descriptors, (ii) uses them in the designed RC-based learning
module to (iii) regulate the DMP-based action level, endows
a system with the ability to modulate its behaviour in settings
never seen before, while stably converging to the goal.

VI. FINAL REMARKS

This paper has presented a biologically-inspired hierarchi-
cal framework which safely modulates an on-going policy
to avoid obstacles. The proposed approach follows a multi-
layered perception-decision-action analysis which (i) extracts
unified system-obstacle low-dimensional geometric descrip-
tors, then (ii) exploits them to rapidly reason about the
environment with a combination of heuristics and learning
techniques, and finally (iii) guides and regulates the obstacle
avoidance behaviour with a conjunction of coupling terms
modulating a DMP-encoded policy. Experimentation con-
ducted in synthetic environments highlights this method’s
generalisation capabilities to confront novel scenarios at the
same time of ensuring the convergence of the system to
the goal. Additionally, real-world trials on an anthropomor-
phic manipulator demonstrated the framework’s suitability to
successfully modulate a policy in the presence of multiple
novel obstacles described by partial visual-depth observa-
tions, while satisfying a user-defined clearance constraint.

The proposed framework is not restricted to the presented
experimental evaluation nor platform. Any robotic system
following a DMP-encoded policy can benefit from this
work to safely modulate its behaviour in the presence of
unexpected obstacles. Similarly to [7], collisions of the links
can also be considered by finding the closest geometric
section on the robot to the obstacle, and then modulating the
kinematic null-space movement with the proposed approach.
An interesting venue for future work is to modulate the
system’s orientation policy to overcome an obstacle, which,

for instance, might have a significant impact on a manip-
ulator carrying a large bulk. Another interesting extension
of this work is learning route selection priorities in cluttered
environments, so systems can autonomously reason about the
most convenient direction to avoid an obstacle.
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and modulation of periodic movements with nonlinear dynamical
systems,” Autonomous robots, vol. 27, no. 1, pp. 3–23, 2009.

[4] A. Gams, B. Nemec, A. J. Ijspeert, and A. Ude, “Coupling movement
primitives: Interaction with the environment and bimanual tasks,”
IEEE Transactions on Robotics, vol. 30, no. 4, pp. 816–830, 2014.

[5] G. Sutanto, Z. Su, S. Schaal, and F. Meier, “Learning sensor feedback
models from demonstrations via phase-modulated neural networks,”
in IEEE International Conference on Robotics and Automation,
pp. 1142–1149, 2018.

[6] È. Pairet, P. Ardón, F. Broz, M. Mistry, and Y. Petillot, “Learning
and generalisation of primitives skills towards robust dual-arm ma-
nipulation,” in AAAI Fall Symposium on Reasoning and Learning in
Real-World Systems for Long-Term Autonomy, pp. 62–69, 2018.

[7] D.-H. Park, H. Hoffmann, P. Pastor, and S. Schaal, “Movement
reproduction and obstacle avoidance with dynamic movement primi-
tives and potential fields,” in IEEE-RAS International Conference on
Humanoid Robots, pp. 91–98, 2008.

[8] S. M. Khansari-Zadeh and A. Billard, “A dynamical system approach
to realtime obstacle avoidance,” Autonomous Robots, vol. 32, no. 4,
pp. 433–454, 2012.

[9] H. Hoffmann, P. Pastor, D.-H. Park, and S. Schaal, “Biologically-
inspired dynamical systems for movement generation: automatic real-
time goal adaptation and obstacle avoidance,” in IEEE International
Conference on Robotics and Automation, pp. 2587–2592, 2009.

[10] A. Rai, F. Meier, A. Ijspeert, and S. Schaal, “Learning coupling terms
for obstacle avoidance,” in IEEE-RAS International Conference on
Humanoid Robots, pp. 512–518, 2014.

[11] A. Rai, G. Sutanto, S. Schaal, and F. Meier, “Learning feedback terms
for reactive planning and control,” in IEEE International Conference
on Robotics and Automation, pp. 2184–2191, 2017.

[12] A. Barr, “Superquadrics and angle-preserving transformations,” IEEE
Computer graphics and Applications, vol. 1, no. 1, pp. 11–23, 1981.

[13] V. Perdereau, C. Passi, and M. Drouin, “Real-time control of redundant
robotic manipulators for mobile obstacle avoidance,” Robotics and
Autonomous Systems, vol. 41, no. 1, pp. 41–59, 2002.



[14] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” in Autonomous robot vehicles, pp. 396–404, Springer, 1986.

[15] T. Lozano-Perez, “Spatial planning: A configuration space approach,”
in Autonomous robot vehicles, pp. 259–271, Springer, 1990.

[16] L. Huber, A. Billard, and J.-J. Slotine, “Avoidance of convex and
concave obstacles with convergence ensured through contraction,”
Robotics and Automation Letters, vol. 4, no. 2, pp. 1462–1469, 2019.

[17] E. Spyromitros-Xioufis, G. Tsoumakas, W. Groves, and I. Vlahavas,
“Multi-target regression via input space expansion: treating targets as
inputs,” Machine Learning, vol. 104, no. 1, pp. 55–98, 2016.

[18] H. Bruyninckx, “Open robot control software: the orocos project,” in
IEEE International Conference on Robotics and Automation, vol. 3,
pp. 2523–2528, 2001.

[19] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J.
Marín-Jiménez, “Automatic generation and detection of highly reliable
fiducial markers under occlusion,” Pattern Recognition, vol. 47, no. 6,
pp. 2280–2292, 2014.


	I INTRODUCTION
	II RELATED WORK
	II-A Dynamic Movement Primitives
	II-B Coupling Terms for Obstacle Avoidance
	II-C Discussion and Contribution

	III COUPLING TERMS for DEAD-ZONE FREE and GUIDED OBSTACLE AVOIDANCE
	III-A Inherently Robust Obstacle Avoidance
	III-B Guiding the Obstacle Avoidance Reactivity
	III-C Coupling Terms Composition
	III-D Proof of Lyapunov's Stability

	IV LEARNING OBSTACLE AVOIDANCE  for NON-POINT OBJECTS
	IV-A Superquadrics as Geometric Approximates
	IV-B Unified Low-dimensional Geometric Descriptors
	IV-C Geometry-conditioned Parameter Regressor
	IV-D Route Selection via Heuristic Cost Rings
	IV-E Convergence to Goal

	V EXPERIMENTAL EVALUATION
	V-A Training the RC-based Learning Module
	V-B Experiments on Familiar Scenarios
	V-C Experiments on Novel Scenarios
	V-D Experiments on a Robotic Platform

	VI FINAL REMARKS
	References

